Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\overrightarrow{u}+\overrightarrow{v}=\left(1+2;2-3\right)=\left(3;-1\right)\)
\(\overrightarrow{u}-\overrightarrow{v}=\left(1-2;2+3\right)=\left(-1;5\right)\)
\(2\overrightarrow{u}=\left(2;4\right)\)
\(3\overrightarrow{v}=\left(6;-9\right)\)
\(2\overrightarrow{u}+3\overrightarrow{v}=\left(2+6;4-9\right)=\left(8;-5\right)\)
\(\left[{}\begin{matrix}2x_U-3x_A+x_B=0\\2y_U-3y_A+y_B=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2x_U=6\\2y_U=2\end{matrix}\right.\Rightarrow\overrightarrow{u}=\left(3;1\right)\)
\(b.\left[{}\begin{matrix}3x_U+2x_A+3x_B=3x_C\\3y_U+2y_A+3y_B=3y_C\end{matrix}\right.\left[{}\begin{matrix}3x_U=1\\3y_U=-31\end{matrix}\right.\Rightarrow\overrightarrow{u}=\left(\dfrac{1}{3};-\dfrac{31}{3}\right)\)
a) Ta có: \(\overrightarrow u = (2; - 3)\)
\( \Rightarrow \overrightarrow u = 2.\;\overrightarrow i + \left( { - 3} \right).\;\overrightarrow j \)
Tương tự ta có: \(\overrightarrow v = (4;1),\;\overrightarrow a = (8; - 12)\)
\( \Rightarrow \overrightarrow v = 4.\;\overrightarrow i + 1.\;\overrightarrow j ;\;\;\overrightarrow a = 8.\;\overrightarrow i + \left( { - 12} \right).\;\overrightarrow j \)
b) Ta có: \(\left\{ \begin{array}{l}\overrightarrow u = 2.\;\overrightarrow i + \left( { - 3} \right).\;\overrightarrow j \\\overrightarrow v = 4.\;\overrightarrow i + 1.\;\overrightarrow j \end{array} \right.\)(theo câu a)
\(\begin{array}{l} \Rightarrow \left\{ \begin{array}{l}\overrightarrow u + \;\overrightarrow v = \left( {2.\;\overrightarrow i + \left( { - 3} \right).\;\overrightarrow j } \right) + \left( {4.\;\overrightarrow i + 1.\;\overrightarrow j } \right)\\4.\;\overrightarrow u = 4\left( {2.\;\overrightarrow i + \left( { - 3} \right).\;\overrightarrow j } \right)\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}\overrightarrow u + \;\overrightarrow v = \left( {2.\;\overrightarrow i + 4.\;\overrightarrow i } \right) + \left( {\left( { - 3} \right).\;\overrightarrow j + 1.\;\overrightarrow j } \right)\\4.\;\overrightarrow u = 4.2.\;\overrightarrow i + 4.\left( { - 3} \right).\;\overrightarrow j \end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}\overrightarrow u + \;\overrightarrow v = 6.\;\overrightarrow i + \left( { - 2} \right).\;\overrightarrow j \\4.\;\overrightarrow u = 8.\;\overrightarrow i + \left( { - 12} \right).\;\overrightarrow j \end{array} \right.\end{array}\)
c) Vì \(\left\{ \begin{array}{l}4.\;\overrightarrow u = 8.\;\overrightarrow i + \left( { - 12} \right).\;\overrightarrow j \\\overrightarrow a = 8.\;\overrightarrow i + \left( { - 12} \right).\;\overrightarrow j \end{array} \right.\) nên ta suy ra \(4.\;\overrightarrow u = \overrightarrow a \)
Lời giải:
\(\overrightarrow{a}-\overrightarrow{u}+2\overrightarrow{v}=\overrightarrow{0}\)
\(\Leftrightarrow (3-x;2)-(1;-2)+2(3;-1)=(0;0)\)
\(\Rightarrow \left\{\begin{matrix} 3-x-1+2.3=0\\ 2-(-2)+2(-1)=0\end{matrix}\right.\) (vô lý)
vecto a=-2*vecto u+vecto v
=>xa=-2*2+3=-1 và ya=-2*3+(-2)=-8