Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(u_n=\frac{n+1}{n-1}u_{n-1}\)
\(u_{n-1}=\frac{n-1+1}{n-1-1}u_{n-2}=\frac{n}{n-2}u_{n-2}\)
\(u_{n-2}=\frac{n-1}{n-3}u_{n-3}\)
...
\(u_2=\frac{2+1}{2-1}u_1\)
Nhân vế với vế:
\(u_nu_{n-1}u_{n-2}...u_2=\frac{\left(n+1\right)n\left(n-1\right)...3}{\left(n-1\right)\left(n-2\right)\left(n-3\right)...1}u_{n-1}u_{n-2}u_{n-3}...u_1\)
\(\Leftrightarrow u_n=\frac{n\left(n+1\right)}{2}u_1=n\left(n+1\right)\)
\(u_n< 100\Rightarrow n^2+n< 100\)
\(\Leftrightarrow n^2+n-100< 0\Rightarrow n\le9\Rightarrow n=\left\{1;2;...;9\right\}\)
\(u_n-n^2-n=u_{n-1}-\left(n-1\right)^2-\left(n-1\right)\)
Đặt \(v_n=u_n-n^2-n\Rightarrow\left\{{}\begin{matrix}v_1=0\\v_n=v_{n-1}\end{matrix}\right.\)
\(\Rightarrow v_n=v_{n-1}=v_{n-2}=...=v_1=0\)
\(\Rightarrow u_n-n^2-n=0\Rightarrow u_n=n^2+n\)
\(\Rightarrow n^2+n< 100\Rightarrow n\le9\)
Dãy số này sai, \(u_3\) không xác định, do đó ko thể truy hồi được từ \(u_4\) trở đi
Muốn dãy số xác định thì \(n>4\)
Dãy số đã cho hiển nhiên là dãy dương
\(u_3=2>1\Rightarrow\) dự đoán dãy trên là dãy tăng hay \(u_{n+1}>u_n\) \(\forall n\ge2\)
Với \(n=2\) ta có \(u_3>u_2\) (đúng)
Giả thiết cũng đúng với \(n=k\) hay \(u_{k+1}>u_k\)
Ta cần chứng minh \(u_{k+1}>u_{k+1}\)
Thật vậy, \(u_{k+2}=\sqrt{u_{k+1}}+\sqrt{u_k}>\sqrt{u_k}+\sqrt{u_{k-1}}=u_{k+1}\)
Mặt khác \(u_n=\sqrt{u_{n-1}}+\sqrt{u_{n-2}}< \sqrt{u_n}+\sqrt{u_n}=2\sqrt{u_n}\)
\(\Rightarrow u_n^2< 4u_n\Rightarrow u_n< 4\)
\(\Rightarrow\) Dãy số tăng và bị chặn trên nên nó có giới hạn
Gọi giới hạn của dãy số là \(a\Rightarrow lim\left(u_n\right)=lim\left(u_{n-1}\right)=lim\left(u_{n+1}\right)=a\)
Từ biểu thức: \(u_{n+1}=\sqrt{u_n}+\sqrt{u_{n-1}}\)
Lấy giới hạn 2 vế: \(\Rightarrow a=\sqrt{a}+\sqrt{a}\Rightarrow\left[{}\begin{matrix}a=0\left(l\right)\\a=4\end{matrix}\right.\)
Vậy \(lim\left(u_n\right)=4\)
Dãy là CSC với \(\left\{{}\begin{matrix}u_1=3\\d=4\end{matrix}\right.\)
\(\Rightarrow u_n=3+\left(n-1\right)4=4n-1\)
\(\Rightarrow4n-1< 100\Rightarrow n\le25\)