Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
* Ta có: Các kết quả thuận lợi để số chấm xuất hiện ở cả hai lần tung giống nhau là:
A= { (1, 1); (2, 2); (3,3); (4, 4); (5,5); (6, 6)}.
⇒ Ω A = 6
* Các kết quả thuận lợi để tổng số chấm xuất hiện ở hai lần tung chia hết cho 3 là:
B = { (1; 2); (2;1); (1; 5); (5; 1); (4; 2); (2; 4); (3; 3); (3; 6); (6;3); (4;5); (5; 4); (6; 6)}
⇒ Ω B = 12
⇒ Ω A + Ω B = 6 + 12 = 18
Đáp án A
Chọn C
Không gian mẫu: “ gieo ngẫu nhiên một con súc sắc 3 lần liên tiếp”
Biến cố A: “ số a b c ¯ chia hết cho 45”
a b c ¯ chia hết cho 45 ⇔ a b c ¯ chia hết cho cả 5 và 9
Vì a b c ¯ chia hết cho 5 nên là số chấm xuất hiện của súc sắc khi gieo).
Vì a b c ¯ chia hết cho 9 mà c = 5 => a + b + 5 chia hết cho 9.
Các cặp số (a;b) sao cho mà a+b+5 chia hết cho 9 là: (1;3), (3;1), (2;2)
Do đó: n(A) = 3.
Xét các cặp (i;j) với i + j ∈ {1, 2, 3, 4, 5, 6,} mà i + j chia hết cho 3
Ta có các cặp có tổng chia hết cho 3 là (1;2); (1;5); (2;4); (3;3); (3;6);(4;5)
Hơn nữa mỗi cặp (trừ cặp (3,3)) khi hoán vị ta được một cặp thỏa yêu cầu bài toán.
Vậy n(B)=11.
Chọn D.
có 3 trường hợp là 2 lần mặt 5 chấm, 1 mặt 5 chấm và 0 có mặt nào
Chọn D
Ta có số phần tử của không gian mẫu là n ( Ω ) = 36
Phương trình 1 2 x 2 + 6 x + m = 0 có hai nghiệm phân biệt khi và chỉ khi
Khi đó số chấm trên hai con con súc sắc là cặp số (i;j) với i,j = 1 , 6 ¯ thỏa mãn
Như thế, có tất cả 12 + 5 + 4 + 3 +2 = 26 cặp số (i;j) để i.j = m < 18
Vậy xác suất cần tìm bằng 26 36
xác xuất bé bao h cũng hơn 1 nghe
A:=1+5
p=36
=> xác suất =6/36=1/6
+ 0 chắc