
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a: Gọi M,N lần lượt là trung điểm của AB,CD
Ta có: ΔIAB vuông cân tại I
=>IA=IB; \(\hat{AIB}=90^0\) ; \(\hat{IAB}=\hat{IBA}=45^0\)
ΔKDC vuông cân tại K
=>KD=KC; \(\hat{DKC}=90^0;\hat{KDC}=\hat{KCD}=45^0\)
ΔIAB vuông tại I
=>\(IA^2+IB^2=AB^2\)
=>\(2\cdot IA^2=CD^2\left(1\right)\)
ΔKCD vuông tại K
=>\(KD^2+KC^2=DC^2\)
=>\(2\cdot KD^2=CD^2\left(2\right)\)
Từ (1),(2) suy ra IA=KD
mà IA=IB và KD=KC
nên IA=IB=KD=KC
Ta có: ΔIAB cân tại I
mà IM là đường trung tuyến
nên IM⊥AB tại M
Ta có: \(AM=MB=\frac{AB}{2}\)
\(DN=NC=\frac{DC}{2}\)
mà AB=CD
nên AM=MB=DN=NC
Xét tứ giác AMND có
AM//ND
AM=ND
Do đó: AMND là hình bình hành
Hình bình hành AMND có \(\hat{DAM}=90^0\)
nên AMND là hình chữ nhật
=>AM⊥MN
=>MN⊥AB
ΔKDC cân tại K
mà KN là đường trung tuyến
nên KN⊥DC tại N
mà DC//AB
nên KN⊥AB
mà MN⊥AB
và KN,MN có điểm chung là N
nên K,N,M thẳng hàng(1)
Ta có: IM⊥AB
MN⊥AB
mà IM,MN có điểm chung là M
nên I,M,N thẳng hàng(2)
Từ (1),(2) suy ra K,N,M,I thẳng hàng
Xét ΔEIK có AD//IK
nên \(\frac{EA}{AI}=\frac{ED}{DK}\)
mà AI=DK
nên EA=ED
Ta có: EA+AI=EI
ED+DK=EK
mà EA=ED và AI=DK
nên EI=EK
=>E nằm trên đường trung trực của IK(3)
Xét ΔFKI có BC//KI
nên \(\frac{FB}{BI}=\frac{FC}{CK}\)
mà BI=CK
nên FB=FC
Ta có: FB+BI=FI
FC+CK=FK
mà FB=FC và BI=CK
nên FI=FK
=>F nằm trên đường trung trực của IK(4)
từ (3),(4) suy ra FE là đường trung trực của IK
=>FE⊥IK
mà IK⊥CD
nên FE//CD
b: Xét ΔKEF có DC//EF
nên \(\frac{KD}{DE}=\frac{KC}{CF}\)
mà KD=KC
nên DE=CF
Ta có: KD+DE=KE
KC+CF=KF
mà KD=KC và DE=CF
nên KE=KF
=>IE=EK=KF=FI
=>IEKF là hình thoi
Hình thoi IEKF có \(\hat{EIF}=90^0\)
nên IEKF là hình vuông

\(\frac{2a-b}{a-b}+\frac{-a}{a-b}\)
\(=\frac{2a-b+\left(-a\right)}{a-b}\)
\(=\frac{a-b}{a-b}\)
=1

Bài 5:
a:
AMCD là hình vuông
=>CM⊥MA tại M
=>CM⊥AB tại M
MBFE là hình vuông
=>MB⊥ME tại M
=>ME⊥AB tại M
mà CM⊥AB tại M
và CM,ME có điểm chung là M
nên M,C,E thẳng hàng
Gọi K là giao điểm của AC và BE
AMCD là hình vuông
=>AC là phân giác của góc DAM
=>\(\hat{CAM}=\frac12\cdot\hat{DAM}=45^0\)
MBFE là hình vuông
=>BE là phân giác của góc MBF
=>\(\hat{MBE}=\hat{FBE}=\frac12\cdot\hat{MBF}=45^0\)
Xét ΔKAB có \(\hat{KAB}+\hat{KBA}=45^0+45^0=90^0\)
nên ΔKAB vuông tại K
=>AK⊥EB tại K
Xét ΔEAB có
AK,EM là các đường cao
AK cắt EM tại C
Do đó: C là trực tâm của ΔEAB
=>BC⊥AE
Bài 4:
a: Xét ΔADI vuông tại D và ΔAHI vuông tại H có
AI chung
\(\hat{DAI}=\hat{HAI}\)
Do đó: ΔADI=ΔAHI
=>AD=AH
mà AD=AB
nên AH=AB
Xét ΔAHK vuông tại H và ΔABK vuông tại B có
AK chung
AH=AB
Do đó: ΔAHK=ΔABK
b: ΔAHK=ΔABK
=>\(\hat{HAK}=\hat{BAK}\)
=>AK là phân giác của góc HAB
=>\(\hat{HAB}=2\cdot\hat{HAK}\)
\(\hat{DAH}+\hat{BAH}=\hat{BAD}\) (tia AH nằm giữa hai tia AB và AD)
\(\Rightarrow2\left(\hat{IAH}+\hat{HAK}\right)=90^0\)
=>\(2\cdot\hat{IAK}=90^0\)
=>\(\hat{IAK}=45^0\)

a: \(x^2-x+1\)
\(=x^2-x+\frac14+\frac34\)
\(=\left(x-\frac12\right)^2+\frac34\ge\frac34>0\forall x\)
b: \(x^2+x+2\)
\(=x^2+x+\frac14+\frac74\)
\(=\left(x+\frac12\right)^2+\frac74\ge\frac74>0\forall x\)
c: \(-a^2+a-3\)
\(=-\left(a^2-a+3\right)\)
\(=-\left(a^2-a+\frac14+\frac{11}{4}\right)\)
\(=-\left(a-\frac12\right)^2-\frac{11}{4}\le-\frac{11}{4}<0\forall a\)
d:Đặt \(A=\frac{3x^2-x+1}{-4x^2+2x-1}\)
\(3x^2-x+1\)
\(=3\left(x^2-\frac13x+\frac13\right)\)
\(=3\left(x^2-2\cdot x\cdot\frac16+\frac{1}{36}+\frac{11}{36}\right)\)
\(=3\left(x-\frac16\right)^2+\frac{11}{12}\ge\frac{11}{12}>0\forall x\) (1)
\(-4x^2+2x-1\)
\(=-4\left(x^2-\frac12x+\frac14\right)\)
\(=-4\left(x^2-2\cdot x\cdot\frac14+\frac{1}{16}+\frac{3}{16}\right)\)
\(=-4\left(x-\frac14\right)^2-\frac34\le-\frac34<0\forall x\) (2)
Từ (1),(2) suy ra \(\frac{3x^2-x+1}{-4x^2+2x-1}<0\forall x\)
=>A<0 với mọi x

a: ta có: EI⊥BF
AC⊥BF
Do đó: EI//AC
=>\(\hat{IEB}=\hat{ACB}\) (hai góc đồng vị)
mà \(\hat{ABC}=\hat{ACB}\) (ΔABC cân tại A)
nên \(\hat{KBE}=\hat{IEB}\)
Xét ΔKBE vuông tại K và ΔIEB vuông tại I có
BE chung
\(\hat{KBE}=\hat{IEB}\)
Do đó: ΔKBE=ΔIEB
=>EK=BI
b: Điểm D ở đâu vậy bạn?

Bằng hình vẽ này thì câu hỏi ko trả lời được đâu em.
Hai tam giác vẽ chẳng chính xác gì hết, giao điểm cũng ko rõ ràng vị trí.
@Ba Chín Bảy đừg ns v chứ
uh