K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 7 2018

A B C

Áp dụng định lý Pytago ta có:

        \(AB^2+AC^2=BC^2\)

\(\Leftrightarrow\)\(BC^2=6^2+8^2=100\)

\(\Leftrightarrow\)\(BC=10\)

\(sinB=\frac{AC}{BC}=\frac{8}{10}=\frac{4}{5}\)     \(\Rightarrow\)\(cosC=\frac{4}{5}\)

\(cosB=\frac{AB}{BC}=\frac{6}{10}=\frac{3}{5}\)    \(\Rightarrow\) \(sinC=\frac{3}{5}\)

\(tanB=\frac{AC}{AB}=\frac{8}{6}=\frac{4}{3}\)     \(\Rightarrow\)\(cotC=\frac{4}{3}\)

\(cotB=\frac{AB}{AC}=\frac{6}{8}=\frac{3}{4}\)      \(\Rightarrow\)\(tanC=\frac{3}{4}\)

20 tháng 7 2018

Cảm ơn nhiều nhé ^^ . mình rất ngu toán . Được bạn giúp thật tốt quá

d) Xét ΔABC vuông tại A có 

\(\sin\widehat{B}=\dfrac{AC}{BC}=\dfrac{8}{10}=\dfrac{4}{5}\)

hay \(\widehat{B}\simeq53^0\)

Ta có: ΔABC vuông tại A(gt)

nên \(\widehat{B}+\widehat{C}=70^0\)(hai góc nhọn phụ nhau)

hay \(\widehat{C}=37^0\)

12 tháng 7 2021

Còn câu C thì sao ạ?

18 tháng 7 2019

Vì các cạnh của tam giác lần lượt là 4cm, 6cm và 6cm nên tam giác đó là tam giác cân. Góc nhỏ nhất của tam giác là góc đối diện với cạnh 4cm.

Kẻ đường cao từ đỉnh của góc nhỏ nhất. Đường cao chia cạnh đáy thành hai phần bằng nhau mỗi phần 2cm.

Ta có: cosβ=26=13⇒β≈70∘32′cos⁡β=26=13⇒β≈70∘32′

Suy ra: α=180∘–(β+β)=180∘–2.70∘32'=38∘56′α=180∘–(β+β)=180∘–2.70∘32′=38∘56′

Vậy góc nhỏ nhất của tam giác bằng 38∘56′38∘56′.

26 tháng 10 2021

b: \(\widehat{NMH}+\widehat{N}=90^0\)

\(\widehat{P}+\widehat{N}=90^0\)

Do đó: \(\widehat{NMH}=\widehat{P}\)

a) Áp dụng định lí Pytago vào ΔABC vuông tại B, ta được:

\(AC^2=AB^2+BC^2\)

\(\Leftrightarrow AC^2=3^2+4^2=25\)

hay AC=5(cm)

Xét ΔABC vuông tại B có 

\(\sin\widehat{A}=\dfrac{BC}{AC}=\dfrac{4}{5};\cos\widehat{A}=\dfrac{AB}{AC}=\dfrac{3}{5};\)

\(\tan\widehat{A}=\dfrac{BC}{BA}=\dfrac{4}{3};\cot\widehat{C}=\dfrac{BA}{BC}=\dfrac{3}{4}\)

23 tháng 9 2022

Áp dụng ĐLPTG, ta có:

AC²=AB²+BC²

<=>AC²=3²+4²=25

<=>AC=5(cm)

Xét tam giác ABC vuông tại B ta có:

Sin A=4/5     cos A=3/5    tg A=3/4      cost A=4/3

 

Xét ΔABC có \(BC^2=AB^2+AC^2\)

nên ΔABC vuông tại A 

Xét ΔBAC vuông tại A có

\(\sin C=\dfrac{AB}{BC}=\dfrac{3}{5}\)

nên \(\widehat{C}=36^052'\)

=>\(\widehat{B}=53^08'\)

Cho ΔABC cân tại A có AB=AC=3cm; BC=4cm

BH=1/2BC=1/2x4=2(cm)

Xét ΔABH vuông tại H có \(\cos B=\dfrac{BH}{AB}=\dfrac{2}{3}\)

nên \(\widehat{B}\simeq48^011'\)

=>Góc cần tìm có số đo là \(1^049'\)

 

Đổi AB=60mm=6cm

Áp dụng định lí Pytago vào ΔBAC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=6^2+8^2=100\)

hay BC=10(cm)

Xét ΔABC có 

\(\left\{{}\begin{matrix}\sin\widehat{B}=\dfrac{AC}{BC}=\dfrac{8}{10}=\dfrac{4}{5}\\\cos\widehat{B}=\dfrac{AB}{BC}=\dfrac{6}{10}=\dfrac{3}{5}\\\tan\widehat{B}=\dfrac{AC}{AB}=\dfrac{8}{6}=\dfrac{4}{3}\\\cot\widehat{B}=\dfrac{AB}{AC}=\dfrac{6}{8}=\dfrac{3}{4}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\sin\widehat{C}=\dfrac{AB}{BC}=\dfrac{6}{10}=\dfrac{3}{5}\\\cos\widehat{C}=\dfrac{AC}{BC}=\dfrac{8}{10}=\dfrac{4}{5}\\\tan\widehat{C}=\dfrac{AB}{AC}=\dfrac{6}{8}=\dfrac{3}{4}\\\cot\widehat{C}=\dfrac{AC}{AB}=\dfrac{8}{6}=\dfrac{4}{3}\end{matrix}\right.\)

28 tháng 6 2021

Không cần nói ạ.