Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có a/b = c/d suy ra a/b = b/d
Áp dụng tính chất dãy tính chất tỉ số = nhau
a/c = b/d = a + b / c + d = a-b/c-d suy ra a+b / c-d = c+d/c-d.
**** MÌNH NHA BẠN.
\(\frac{a}{b}=\frac{c}{d}\)\(\Rightarrow\frac{a}{c}=\frac{b}{d}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :
\(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\)( 1 )
\(\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\)( 2 )
Từ ( 1 ) và ( 2 ) \(\Rightarrow\frac{a+b}{c+d}=\frac{a-b}{c-d}\)
\(\Rightarrow\frac{a+b}{a-b}=\frac{c+d}{c-d}\)
Đặt \(\frac{a}{b}=\frac{c}{d}=k\left(k\ne0\right)\Rightarrow a=kb;c=kd\)
\(\frac{a+b}{b}=\frac{kb+b}{b}=\frac{b\left(k+1\right)}{b}=k+1\)
\(\frac{c+d}{d}=\frac{kd+d}{d}=\frac{d\left(k+1\right)}{d}=k+1\)
Vậy: \(\frac{a+b}{b}=\frac{c+d}{d}\left(=k+1\right)\)
`Answer:`
a. Ta đặt \(\hept{\begin{cases}k=\frac{a}{b}=\frac{c}{d}\\bk=a\\dk=c\end{cases}}\)
\(\Rightarrow\frac{a+b}{b}=\frac{b+bk}{b}=\frac{\left(k+1\right).b}{b}=k+1\left(1\right)\)
\(\Rightarrow\frac{c+d}{d}=\frac{d+dk}{d}=\frac{\left(k+1\right).d}{d}=k+1\left(2\right)\)
Từ `(1)(2)=>\frac{a+b}{b}=\frac{c+d}{d}`
\(\frac{a}{b}=\frac{c}{d}\)\(\Rightarrow\frac{a}{c}=\frac{b}{d}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\)
\(\frac{b}{d}=\frac{a+b}{c+d}\Rightarrow\frac{a+b}{b}=\frac{c+d}{d}\) (đpcm)
(Mik nghĩ zậy thui chứ ko chắc có trình bày đúng hay ko)
_Hok tốt_
!!!
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}=\frac{a-b}{c-d}\Rightarrow\frac{a+b}{c+d}=\frac{a-b}{c-d}\Rightarrow\frac{a+b}{a-b}=\frac{c+d}{c-d}\)(đpcm)
\(\frac{a}{b}=\frac{c}{d}=>\frac{a}{c}=\frac{b}{d}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}=\frac{a-b}{c-d}\)
\(=>\frac{a+b}{a-b}=\frac{c+d}{c-d}\left(\text{Đ}PCM\right)\)
Ta có : a/b = c/d => a/c = b/d
Áp dụng tính chất dãy tính chất tỉ số bằng nhau :
a/c = b/d = a+b/c+d = a-b/c-d => a+b/a-b = c+d/c-d
\(\frac{a}{b}=\frac{c}{d}\Rightarrow ad=bc\Rightarrow\frac{a}{c}=\frac{b}{d}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}=\frac{a-b}{c-d}\)
\(\Rightarrow\left(a+b\right)\left(c-d\right)=\left(a-b\right)\left(c+d\right)\)
\(\Rightarrow\frac{a+b}{a-b}=\frac{c+d}{c-d}\)(điều phải chứng minh)
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}=\frac{a-b}{c-d}\Rightarrow\frac{a+b}{a-b}=\frac{c+d}{c-d}\)
Ta có :a/b = c/d suy ra a/c = b/d
áp dụng tính chất dãy tính chất tỉ số bằng nhau
a/c =b/d = a+b/c+d = a-b/c-d suy ra a+b/a-b = c+d/c-d
từ giả thiết \(\Rightarrow\frac{b}{a}=\frac{d}{c}\)
ta có
\(\frac{2021a-b}{a}=\frac{2021a}{a}-\frac{b}{a}=2021-\frac{b}{a}=2021-\frac{d}{c}=\frac{2021c-d}{c}\)
vậy ta có dpcm