Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn A
Số phần tử của A là A 9 4 = 3024 số.
Số phần tử của không gian mẫu là n ( Ω ) = 3024
Gọi A là biến cố: “Chọn được một số chia hết cho 11 và tổng bốn chữ số của nó chia hết cho 11”.
Xét số tự nhiên có 4 chữ số có dạng
Theo bài ra ta có: và
Suy ra
Trong các chữ số 1;2;3;4;5;6;7;8;9 có các bộ số mà tổng chia hết cho 11 là
Chọn 2 cặp trong 4 cặp số trên để tạo số
Chọn {a;c} có 4 cách, chọn {b;d} có 3 cách, sau đó sắp thứ tự các số a, b, c, d. Ta được 4.3.2.2 = 48
Suy ra n(A) = 48
Chọn A
+ Ta có
Ta có d có 4 cách chọn {2;4;6;8}, a có 9 cách chọn, b có 9 cách chọn. Vì a + b + d khi chia cho 3 có 3 khả năng số dư
{0;1;2}, mà nên c có 3 cách chọn.
Ta có:
Xác suất cần tìm là:
Đáp án : A
+) ; c có 4 cách chọn. Chọn chữ số còn lại có 7 cách chọn.
+) ; c có 3 cách chọn. Chọn chữ số còn lại có 7 cách chọn.
+) a = 7; ; b khác 9, b có 6 cách chọn.
+) a = 7; c = 8; b có 6 cách chọn
Vậy có 3.4.7 + 3.3.7 + 3.6 + 6 = 171 số.
Đáp án : D
Để tính nhanh với bài này ta dùng quy tắc phần bù.
Trước tiên ta tính số các số chẵn có 5 chữ số đôi một khác nhau và được lập ra từ các chữ số của tập A.
+ Gọi các số đó là
e có 4 cách chọn( vì x là số chẵn nên e có thể là 2;34;6;8); a có 8 cách; b có 7 cách; c có 6 cách và d có 5 cách.
Nên có tất cả 4.8.7.6.5=6720 số
+ Gọi là số bắt đầu bởi 125 và có 5 chữ số đôi một khác nhau.
Suy ra b có 3 cách chọn (b có thể là 2;4;8), a có 5 cách chọn nên có số.
+ Suy ra có tất cả 6720 - 15 = 6705 số cần tìm.
Chọn A
Vì là tập tất cả các số tự nhiên có 5 chữ số nên
Số phần tử của không gian mẫu là
Gọi X là biến cố: “Chọn được một số chia hết cho 7 và chữ số hàng đơn vị bằng 1 từ tập A”.
có tận cùng bằng 1,do đó với có chữ số tận cùng là 3.
Xét các trường hợp sau:
1) M là số có 4 chữ số có dạng m n p q ¯ Khi đó:
- Với m = 1, do và q = 3 nên n ≥ 4
+) Khi n = 4 thì p > 2 nên p ∈ {4;5;6;7;8;9}. Ta được 6 số thỏa mãn.
+) Khi n ≥ 5: Có 5 cách chọn n thuộc tập hợp {5;6;7;8;9}. Khi đó p ≠ m,n,q nên p có 7 cách chọn. Ta được 35 số thỏa mãn.
- Với m ≥ 2 tức là có 7 cách chọn m từ tập {2;4;5;6;7;8;9}. Khi đó với mọi n,p thuộc tập hợp {0;1;2;4;5;6;7;8;9} và n ≠ p ≠ m, do đó có 8 cách chọn n, có 7 cách chọn p. Ta được 7.8.7 = 392 số thỏa mãn
2) M là số có 5 chữ số có dạng m n p q r ¯ Khi đó: m n p q r ¯ ≤ 14285 và r = 3
Do m n p q r ¯ ≤ 14285 nên m chỉ nhận giá trị bằng 1 và n ≤ 4
- Với m=1; n = 0,2 thì p,q là các số tùy ý thuộc tập {0;2;4;5;6;7;8;9} và p ≠ q ≠ n Ta được 2.7.6 = 84 số thỏa mãn.
- Với m=1; n = 4:
+) Khi p = 0 thì q là số tùy ý thuộc tập {2;5;6;7;8;9}. Ta được 6 số thỏa mãn.
+) Khi p = 2 thì q phải thuộc tập {0;5;6;7;8}. Ta được 5 số thỏa mãn.
Vậy số phần tử của biến cố X là n(X) = 6 + 35 + 392 + 84 + 6 + 5 = 528
Xác suất để chọn được một số chia hết cho 7 và chữ số hàng đơn vị là 1 bằng
Ta cần đếm số các số tự nhiên dạng , với a;b;c là các số phân biệt thuộc tập X.
Công đoạn 1: Chọn c ∈ X, để số tự nhiên chia hết cho 5 thì chỉ có 1 cách chọn c (c = 5).
Công đoạn 2: Chọn a ∈ X\{5} , có 5 cách.
Công đoạn 3: Chọn b ∈ X\{5;a} , có 4 cách.
Vậy theo quy tắc nhân, số các số tự nhiên thỏa mãn yêu cầu là: 1.5.4 = 20 số.
Chọn C.
Đáp án D
Ta có bộ 3 số có tổng chia hết cho 3 là: {1;2;3}, {1;2;6}, {1;2;9}, {1;3;5}, {1;3;8}, {1;4;7}, {1;5;6},{1;5;9}, {1;6;8}, {1;8;9}, {2;3;4}, {2;3;7}, {2;4;6}, {2;4;9}, {2;5;8}, {2;6;7}, {2;7;9}, {3;4;5}, {3;4;8}, {3;5;7}, {3;6;9}, {3;7;8}, {4;5;6}, {4;5;9}, {4;6;8}, {5;6;7}, {6;7;8}, {7;8;9}.
Mỗi bộ số ta lập được 3! = 6 số.
Vậy có 30.6=180 số.
sao lại nhân cho 30 vậy