Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Số các số tự nhiên có 5 chữ số khác nhau lập nên từ 5 chữ số này là 5!=120(số)
Số các số tự nhiên có 5 chữ số khác nhau lập nên từ 5 chữ số này có bắt đầu là 34 là: 3!=6(số)
=>Có 120-6=114(số) cần tìm
Số bất kì: \(6!-5!\) số
Xếp 0 và 5 cạnh nhau: 2 cách
Hoán vị bộ 05 với 4 chữ số còn lại: \(5!\) cách
Hoán vị bộ 05 với 4 chữ số còn lại sao cho 0 đứng đầu: \(4!\) cách
\(\Rightarrow2.5!-4!\) cách xếp sao cho 0 và 5 cạnh nhau
\(\Rightarrow6!-5!-\left(2.5!-4!\right)\) cách xếp thỏa mãn
a) Từ 4 chữ số 0, 1, 2, 3:
- Hàng trăm có 3 cách chọn.
- Hàng chục có 3 cách chọn.
- Hàng đơn vị có 2 cách chọn.
Vậy có tất cả 3.3.2 = 18 số tự nhiên khác nhau có 3 chữ số được lập từ 0, 1, 2, 3.
b) - Trường hợp 1: hàng đơn vị là số 0 như vậy hàng trăm có 3 cách chọn, hàng chục có 2 cách chọn.
Có tất cả 1. 2. 3 = 6 số có thể lập được.
- Trường hợp 2: hàng đơn vị là số 2 như vậy hàng trăm có 2 cách chọn, hàng chục có 2 cách chọn.
Có tất cả 1. 2. 2 = 4 số có thể lập được.
Vậy có thể lập 6 + 4 = 10 số tự nhiên chẵn có ba chữ số khác nhau.
a, Số các số tự nhiên gồm 8 chữ số đôi một khác nhau được lập từ các chữ số 1, 2, 3, 4, 5, 6, 7, 8 là: \({P_8} = 8! = 40320\)( số )
b, Số các số tự nhiên gồm 6 chữ số đôi một khác nhau được lập từ các chữ số 1, 2, 3, 4, 5, 6, 7, 8 là: \(P_8^6 = 20160\)( số )
\(\overline{abcde}\)
TH1: e=0
e có 1 cách chọn
Chữ số 2 có 4 cách chọn
ba chỗ còn lại có 4*3*2=24 cách
=>Có 4*24=96 cách
TH2: e=5; a=2
a,e có 1 cach
b có 4 cách
c có 3 cách
dcó 2 cách
=>Có 4*3*2=24 cách
TH3: e=5; a<>2
e có 1 cách chọn
a có 3 cách chon
số 2 có 3 cách
hai số còn lại có 3*2=6 cách
=>Có 3*3*6=54 cách
=>CÓ 96+24+54=174 số
Các số tự nhiên nhỏ hơn 1000 gồm các số có 1 chữ số, có 2 chữ số hoặc 3 chữ số.
+ Số có 1 chữ số chia hết cho 5 là: 0 và 5 => có 2 số.
+ Số có 2 chữ số chia hết cho 5:
Hàng đơn vị là 0: chữ số hàng chục có 9 cách chọn.
Hàng đơn vị là 5: chữ số hàng chục có 8 cách chọn (khác 0).
=> Có \(9 + 8 = 17\) (số)
+ Số có 3 chữ số chia hết cho 5:
Hàng đơn vị là 0: chữ số hàng trăm có 9 cách chọn, hàng chục có 8 cách chọn.
Hàng đơn vị là 5: chữ số hàng trăm có 8 cách chọn, hàng chục có 8 cách chọn.
=> Có 9.8+8.8 = 136 (số)
Vậy có tất cả \(2 + 17 + 136 = 155\) số thỏa mãn ycbt.
Gọi STN có 3 chữ số là \(\overline {abc} \)
- a có 4 cách ( khác 0).
- b có 4 cách (khác a).
- c có 3 cách (khác a, b).
Vậy có thể lập được 4. 4. 3= 48 số tự nhiên có ba chữ số khác nhau.
Có 7 cách chọn chữ số hàng đơn vị
Có 6 cách chọn chữ số hàng chục
Có 5 cách chọn chữ số hàng trăm
Số số tự nhiên có thể lập được là:
5.6.7 = 210 (số)