Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.
Chọn 4 bạn bất kì từ 3 lớp: \(C_{12}^4\)
Chọn 4 bạn ko có lớp A: \(C_9^4\)
Chọn 4 bạn ko có lớp B: \(C_8^4\)
Chọn 4 bạn ko có lớp C: \(C_7^4\)
Số cách thỏa mãn: \(C_{12}^4-\left(C_7^4+C_8^4+C_9^4\right)=...\)
b.
Chọn 4 bạn có đúng 1 bạn lớp A: \(C_3^1.C_9^3\)
Số các thỏa mãn:
\(C_{12}^4-\left(3.C_9^3+C_9^4\right)\)
Gọi A: “Học sinh thích môn Bóng đá”
B: “Học sinh thích môn Bóng bàn”
Do đó ta có \(P\left( A \right) = \frac{{19}}{{30}},P\left( B \right) = \frac{{17}}{{30}},P\left( {AB} \right) = \frac{{15}}{{30}}\)
Theo công thức cộng xác suất
\(P\left( {A \cup B} \right) = P\left( A \right) + P\left( B \right) - P\left( {AB} \right) = \frac{{19}}{{30}} + \frac{{17}}{{30}} - \frac{{15}}{{30}} = \frac{{21}}{{30}} = \frac{7}{{10}}\)
Vậy xác suất để chọn được học sinh thích ít nhất một trong hai môn Bóng đá hoặc Bóng bàn là \(\frac{7}{{10}}\)
Đáp án C
Số cách chọn ngẫu nhiên là C 10 3
Số cách chọn ba học sinh đủ hai lớp A và B là C 6 2 C 4 1 + C 6 1 C 4 2
Xác suất cần tính bằng
Chọn C
CÁCH 1
Xét phép thử “Bạn lớp trưởng nữ chọn ngẫu nhiên 4 học sinh khác trong lớp”
Khi đó:
Gọi A là biến cố: “4 học sinh được chọn có cả nam và nữ”.
Ta xét các trường hợp:
TH1: Chọn được 1 nữ, 3 nam. Số cách chọn là:
TH2: Chọn được 2 nữ, 2 nam. Số cách chọn là: .
TH3: Chọn được 3 nữ, 1 nam. Số cách chọn là: .
Suy ra
Vậy xác suất cần tìm là:
CÁCH 2
Xét phép thử “Bạn lớp trưởng nữ chọn ngẫu nhiên 4 học sinh khác trong lớp”
Khi đó:
Gọi A là biến cố: “4 học sinh được chọn có cả nam và nữ” thì A ¯ là biến cố: “cả 4 học sinh được chọn chỉ có nam hoặc nữ”.
Ta có
Do đó xác suất xảy ra của biến cố A ¯ là:
Suy ra
Chọn C
Gọi A: “4 học sinh được chọn có cả nam và nữ.”
=> A ¯ : “4 học sinh được chọn chỉ có nam hoặc chỉ có nữ.”
Số cách để lớp trưởng nữ chọn ngẫu nhiên 4 học sinh khác: Ω = C 44 4
Số cách chọn 4 học sinh toàn là nam: C 25 4
Số cách chọn 4 học sinh toàn là nữ: C 19 4
Xác suất để 4 học sinh được chọn có cả nam và nữ:
Không gian mẫu: \(C_{25}^9\)
Chọn 9 bạn cùng 1 lớp: \(C_{10}^9\) cách
Chọn 9 bạn trong 2 lớp: \(C_{15}^9+C_{17}^9+C_{18}^9\)
Xác suất: \(P=1-\dfrac{C_{10}^9+C_{15}^9+C_{17}^9+C_{18}^9}{C_{25}^9}=...\)
Chọn ngẫu nhiên 3 bạn: \(C_{15}^3=455\) cách
Chọn 3 bạn không có mặt lớp A: \(C_{11}^3=165\) cách
Chọn 3 bạn ko có mặt lớp B: \(C_{10}^3=120\)
Chọn 3 bạn ko có mặt lớp C: \(C_9^3=84\)
a.
Chọn 3 bạn có mặt đủ 3 lớp: \(455-\left(165+120+84\right)=86\) cách
b.
Chọn 3 bạn có ít nhất 1 bạn lớp A: \(455-165=290\) cách
c.
Không hiểu ý câu hỏi?
Gọi A là biến cố “Bạn đó thích nhạc cổ điển”, B là biến cố “Bạn đó thích nhạc trẻ”, C là biến cố “Bạn đó không thích cả nhạc cổ điển và nhạc trẻ”.
a) Xác suất bạn đó thích nhạc cổ điển là \(P\left( A \right) = \frac{{14}}{{40}} = \frac{7}{{20}}\)
Xác suất bạn đó thích nhạc trẻ là \(P\left( B \right) = \frac{{13}}{{40}}\)
Xác suất bạn đó thích cả nhạc cổ điển và nhạc trẻ là \(P\left( C \right) = \frac{5}{{40}} = \frac{1}{8}\)
Xác suất bạn đó thích nhạc cổ điển hoặc nhạc trẻ là
\(P\left( {A \cup B} \right) = P\left( A \right) + P\left( B \right) - P\left( {AB} \right) = \frac{7}{{20}} + \frac{{13}}{{40}} - \frac{1}{8} = \frac{{11}}{{20}}\)
b) Ta có \(\overline C = A \cup B\) nên xác suất để bạn đó không thích cả nhạc cổ điển và nhạc trẻ là
\(P\left( C \right) = 1 - P\left( {\overline C } \right) = 1 - P\left( {A \cup B} \right) = 1 - \frac{{11}}{{20}} = \frac{9}{{20}}\)
Đáp án D.
Gọi A:”Bạn được chọn có số thứ tự lớn hơn số thứ tự của Nam”.
Lời giải:
TH1: Chọn 2 bạn lớp A, 1 bạn B, 1 bạn C, có:
$C^2_4.C^1_5.C^1_6=180$ cách chọn
TH2: Chọn 1 bạn A, 2 bạn B, 1 bạn C, có:
$C^1_4.C^2_5.C^1_6=240$ cách chọn
TH3: Chọn 1 bạn A, 1 bạn B, 1 bạn C, có:
$C^1_4.C^1_5.C^2_6=300$ cách chọn
Tổng số cách chọn: $720$ cách chọn.