K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 4 2017

Hướng dẫn làm bài:

Ta có ˆBPDBPD^ là góc ở ngoài đường tròn (O) nên:

ˆBPD=sđcungBQD−sđcungAC2BPD^=sđcungBQD−sđcungAC2

Ta có ˆAQCAQC^ là góc nội tiếp trong đường tròn (O) nên:

ˆAQC=12sđcungACAQC^=12sđcungAC

Do đó:

ˆBPD+ˆAQC=sđcungBQF−sđcungAC2+sđcungAC2=sđcungBQD2=420+3802=400BPD^+AQC^=sđcungBQF−sđcungAC2+sđcungAC2=sđcungBQD2=420+3802=400

Vậy ˆBPD+ˆAQC=400

25 tháng 4 2017

Giải bài 11 trang 135 SGK Toán 9 Tập 2 | Giải toán lớp 9Giải bài 11 trang 135 SGK Toán 9 Tập 2 | Giải toán lớp 9

10 tháng 7 2018

Giải bài 11 trang 135 SGK Toán 9 Tập 2 | Giải toán lớp 9

Giải bài 11 trang 135 SGK Toán 9 Tập 2 | Giải toán lớp 9

26 tháng 6 2019

a, Ta có:  B P D ^ = 1 2 s đ B D ⏜ - s đ A C ⏜ ,   A Q C ^ = 1 2 s đ B D ⏜ + s đ A C ⏜

=>  B P D ^ + A Q C ^ = s đ B D ⏜ = 140 0

=>  B C D ^ = 70 0

b, HS tự chứng minh

24 tháng 9 2019

O C F A E B M P Q 1

+) Bước 1: Chứng minh \(\Delta\) FPO vuông tại P

Ta có: \(\widehat{O_1}=\widehat{FOP}=\widehat{FOE}=\widehat{FOM}+\widehat{MOE}=\frac{1}{2}\widehat{COM}+\frac{1}{2}\widehat{MOB}=\frac{1}{2}\widehat{BOC}\)

=> \(\widehat{FOP}=\frac{1}{2}\widehat{BOC}\)

mà \(\widehat{FCP}=\widehat{FCB}=\frac{1}{2}\widehat{BOC}\) ( góc nội tiếp = 1/2 góc ở tâm khi chắn cùng một cung)

=> \(\widehat{FOP}=\widehat{FCP}\)

=> Tứ giác CFPO nội tiếp  => \(\widehat{FPO}+\widehat{FCO}=180^o\Rightarrow\widehat{FPO}=180^o-90^o=90^o\)

=>  \(\Delta\) FPO vuông tại P

+) Bước 2: Chứng minh  \(\Delta\) EQO vuông tại Q. ( Chứng minh tương tự)

+) Bước 3: Chứng minh tỉ số: \(\frac{PQ}{EF}=\frac{OQ}{OE}\)

Xét  \(\Delta\) FPO vuông tại P và  \(\Delta\) EQO vuông tại Q có: \(\widehat{O_1}\) chung 

=>  \(\Delta\) FPO  ~  \(\Delta\) EQO

=> \(\frac{OQ}{OE}=\frac{OP}{OF}\)

Xét  \(\Delta\) OQP và  \(\Delta\) OEF  có: \(\frac{OQ}{OE}=\frac{OP}{OF}\)( chứng minh trên ) và \(\widehat{O_1}\) chung

=>  \(\Delta\) OQP ~  \(\Delta\) OEF

=> \(\frac{PQ}{EF}=\frac{OQ}{OE}\)(1) 

+) Bước 4: Chứng minh Tỉ số \(\frac{PQ}{EF}\)không đổi khi M di chuyển trên cung nhỏ BC

Xét \(\Delta\)EQO vuông tại Q  => \(\cos\widehat{O_1}=\frac{OQ}{OE}\)

Mặt khác : \(\widehat{O_1}=\frac{1}{2}\widehat{BOC}\) ( xem chứng minh ở Bước 1) 

=> \(\cos\frac{1}{2}.\widehat{BOC}=\frac{OQ}{OE}\) (2)

Từ (1) ; (2) => \(\frac{PQ}{EF}=\cos\frac{1}{2}.\widehat{BOC}\)không đổi  khi M di chuyển. ::))