Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Hai tam giác vuông ABO và ACO có chung cạnh huyền AO nên A, B, O, C cùng thuộc đường tròn đường kính AO.
Vậy tứ giác ABOC là tứ giác nội tiếp.
b) Ta thấy ngay \(\Delta ABD\sim\Delta AEB\left(g-g\right)\)
\(\Rightarrow\frac{AB}{AE}=\frac{AD}{AB}\Rightarrow AE.AD=AB^2\)
Xét tam giác vuông ABO có BH là đường cao nên áp dụng hệ thức lượng ta có:
\(AH.AO=AB^2\)
Suy ra AD.AE = AH.AO
c) Ta có \(\widehat{PIK}+\widehat{IKQ}+\widehat{P}+\widehat{Q}=360^o\)
\(\Rightarrow2\left(\widehat{PIO}+\widehat{P}+\widehat{OKQ}\right)=360^o\)
\(\Rightarrow\widehat{PIO}+\widehat{P}+\widehat{OKQ}=180^o\)
Mặt khác \(\widehat{PIO}+\widehat{P}+\widehat{IOP}=180^o\)
\(\Rightarrow\widehat{IOP}=\widehat{OKQ}\Rightarrow\Delta PIO\sim\Delta QOK\)
\(\Rightarrow\frac{IP}{PO}=\frac{OQ}{KQ}\Rightarrow PI.KQ=PO^2\)
Sử dụng bất đẳng thức Cô-si ta có:
\(IP+KQ\ge2\sqrt{IP.KQ}=2\sqrt{OP^2}=PQ\)
acje cho hỏi 2 tam giác đồng dạng ở câu b là góc nào í chỉ ro rõ cho e với ạk

Lời giải 1 bài toán tương tự - Dài và khó
Giải toán: Bài hình trong đề thi HK2 Lớp 9 | Rất phức tạp. - YouTube

c) ký hiệu các góc QOB, BOF, FOM, MOC, COE, EOA, AOP lần lượt là O1, O2, O3, O4, O5, O6, O7
Dễ thấy O5+O6+O7=90 mà O6=O4+O5 nên suy ra 2O5+O4+O7=90 (1)
tương tự 2O2+O1+O4=90 (vì O2=O3) (2).
mặt khác O7=O1 vì cùng phụ với 2 góc P và Q là 2 góc bằng nhau
Từ đó ta có O2=O5
lại có O2+OFQ =90
O5+POE=90 suy ra OFQ =POE (dpcm)
d) tam giác PEO đồng dạng với tam giác QOF nên suy ra PE.QF=OP.OQ=OP^2
Áp dụng bđt Cosi ta có PE+QF>= 2 căn PE.QF=2.căn OP^2=2OP=PQ (dpcm)