Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) BH // OA và cùng vuông góc với xy
Tam giác AOB cân tại O vì OA = OB = bán kính của (O)
Góc HBA = góc BAO ( so le trong)
góc BAO = ABO ( vì tam giác AOB cân tại O)
Suy ra HBA = ABO hay BA là phân giác góc HBO
2) Phân giác ngoài của HBO là đường thẳng vuông góc với phân giác trong BA ---------(1)
Gọi A' là giao điểm thứ hai của OA với (O)
vì AA' là đường kính nên BA' vuông góc với BA------(2)
Từ (1) và (2) suy ra phân giác ngoài của HBO qua A" cố định
3) MO vuông góc với AB ( vì tam giác AOB cân tại O)
Trong tam giác MBO có BA là phân giác cũng là đường cao
Suy ra BM = BO
BO = BA
suy ra BM = OA
Suy ra AOBM là hình bình hành ( vì BM// = OA)
Mà OB = OA nên AOBM là hình thoi
Vậy AM = AO
Hay M thuộc đường tròn tâm A bán kính OA
Gọi BE cắt đường tròn (O) tại điểm thứ hai là N. Gọi L là hình chiếu của I trên ME.
Dễ thấy ^BNA = 900. Suy ra \(\Delta\)BNA ~ \(\Delta\)BCE (g.g) => BN.BE = BC.BA
Cũng dễ có \(\Delta\)BMA ~ \(\Delta\)BCK (g.g) => BC.BA = BM.BK. Do đó BN.BE = BM.BK
Suy ra tứ giác KENM nội tiếp. Từ đây ta có biến đổi góc: ^KNA = 3600 - ^ANM - ^KNM
= (1800 - ^ANM) + (1800 - ^KNM) = ^ABM + (1800 - ^AEM) = ^EFM + ^MEF = ^KFA
=> 4 điểm A,K,N,F cùng thuộc một đường tròn. Nói cách khác, đường tròn (I) cắt (O) tại N khác A
=> OI vuông góc AN. Mà AN cũng vuông góc BE nên BE // OI (1)
Mặt khác dễ có E là trung điểm dây KF của (I) => IE vuông góc KF => IE // AB (2)
Từ (1);(2) suy ra BOIE là hình bình hành => IE = OB = const
Ta lại có EM,AB cố định => Góc hợp bởi EM và AB không đổi. Vì IE // AB nên ^IEL không đổi
=> Sin^IEL = const hay \(\frac{IL}{IE}=const\). Mà IE không đổi (cmt) nên IL cũng không đổi
Vậy I di động trên đường thẳng cố định song song với ME, cách ME một khoảng không đổi (đpcm).