Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác ABOC có góc OBA+góc OCA=180 độ
nên OBAC là tứ giác nội tiếp
b: Xét (OA/2) có
góc ACB là góc nội tiếp chắn cung AB
gsóc AOC là góc nội tiếp chắn cung AC
sđ cung AB=sđ cug AC
Do đó góc ACB=góc AOC
c: Xét ΔABE và ΔADB có
góc ABE=góc ADB
góc BAE chung
Do đó: ΔABE đồng dạng với ΔADB
Suy ra: AB/AD=AE/AB
hay \(AB^2=AE\cdot AD\)
B1, a, Xét tứ giác AEHF có: góc AFH = 90o ( góc nội tiếp chắn nửa đường tròn)
góc AEH = 90o (góc nội tiếp chắn nửa đường tròn )
Góc CAB = 90o ( tam giác ABC vuông tại A)
=> tứ giác AEHF là hcn(đpcm)
b, do AEHF là hcn => cũng là tứ giác nội tiếp => góc AEF = góc AHF ( hia góc nội tiếp cùng chắn cung AF)
mà góc AHF = góc ACB ( cùng phụ với góc FHC)
=> góc AEF = góc ACB => theo góc ngoài tứ giác thì tứ giác BEFC là tứ giác nội tiếp (đpcm)
c,gọi M là giao điểm của AI và EF
ta có:góc AEF = góc ACB (c.m.t) (1)
do tam giác ABC vuông tại A và có I là trung điểm của cạng huyền CB => CBI=IB=IA
hay tam giác IAB cân tại I => góc MAE = góc ABC (2)
mà góc ACB + góc ABC + góc BAC = 180o (tổng 3 góc trong một tam giác)
=> ACB + góc ABC = 90o (3)
từ (1) (2) và (3) => góc AEF + góc MAE = 90o
=> góc AME = 90o (theo tổng 3 góc trong một tam giác)
hay AI uông góc với EF (đpcm)
a) Ta có: \(\widehat{OBA}+\widehat{OCA}=90^o\)
=> OBAC nội tiếp
b) Xét tam giác AEB và tam giác ABD
Có: \(\widehat{BAD}\)chung
\(\widehat{ADB}=\widehat{ABE}=\frac{1}{2}sđ\widebat{BE}\)
=> Tam giác AEB đồng dạng tam giác ABD (g.g)
=> \(\frac{AE}{AB}=\frac{AB}{AD}\)=>AB2=AE.AD (đpcm)
c) Kẽ BE cắt AC tại S
CE cắt AB tại P
Ta có:\(\hept{\begin{cases}\widehat{BEP}=\widehat{CES}=\frac{1}{2}sđ\widebat{BC}\\\widehat{AEP}=\widehat{CED}=\frac{1}{2}sđ\widebat{CD}\end{cases}}\)(1)
Mặt khác: \(\hept{\begin{cases}\widehat{BDC}=\widehat{BCA}=\frac{1}{2}sđ\widebat{BC}\\\widehat{DBC}=\widehat{BCA}\left(slt\right)\end{cases}}\)
=> \(\widehat{BDC}=\widehat{DBC}\)
=> Tam giác BDC cân tại C
=> CD=BC
=> \(\widebat{CD}=\widebat{BC}\)(2)
Từ (1),(2) => \(\widehat{BEP}=\widehat{AEP}\)
=> Tia đổi của tia EC là tia phân giác của góc BEA
a: Xét tứ giác ABOC có \(\widehat{ABO}+\widehat{ACO}=180^0\)
nên ABOC là tứ giác nội tiếp
b: \(\widehat{ACB}=\widehat{AOB}\)
mà \(\widehat{AOB}=\widehat{AOC}\)
nên \(\widehat{ACB}=\widehat{AOC}\)
c: Xét ΔABE và ΔADB có
\(\widehat{ABE}=\widehat{ADB}\)
góc BAE chung
Do đó: ΔABE\(\sim\)ΔADB
Suy ra: AB/AD=AE/AB
hay \(AB^2=AE\cdot AD\)