K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 8 2016

o x y A B M I

Xét tam giác OBM vuông tại B và tam giác OAM vuông tại A ta có

OM=OM (cạnh chung)

góc BOM = góc AOM ( OM là tia phân giác góc AOB)

-> tam giác OBM = tam giac OAM (ch-gn)

-> OB = OA ( 2 cạnh tương ứng)

Gọi I là giao điềm OM và AB

xét tam giác OBI và tam giác AOI ta có

OB=OA (cmt)

OI=OI ( cạnh chung)

goc BOI=goc AOI ( OI là tia phân giác góc BOI)

-> tam giac OBI=tam giac OAI ( c-g-c)

-> goc BIO= goc AIO (2 góc tương ứng)

mà góc BIO+ góc AIO =180 (2 góc kề bù)

nên góc BIO+ góc BIO=180

-> 2 góc BIO=180

góc BIO=180/2=90

-> AB vuong goc OM tại I

25 tháng 8 2016

Đồng ý với Thao Nhi. 

Thêm cách nầy của mình có đc ko nhé

Tam giác BOI = Tam giắc AOI => OB=OA nên tam giác AOB cân tại O => OI Là phân giác và là đường cao => OI Vuông góc với AB

2 tháng 5 2018

A B x y O C D M

a) Xét \(\Delta\)CAO và \(\Delta\)OBD: ^CAO=^OBD=900; ^AOC=^BDO (Cùng phụ ^BOD)

=> \(\Delta\)CAO ~ \(\Delta\)OBD (g.g) => \(\frac{AC}{BO}=\frac{AO}{BD}\Rightarrow AO.BO=AC.BD\)

\(\Rightarrow\frac{1}{2}AB.\frac{1}{2}AB=AC.BD\Leftrightarrow\frac{1}{4}AB^2=AC.BD\)

\(\Leftrightarrow AB^2=4.AC.BD\)(đpcm)

b) Ta có: \(\Delta\)CAO ~ \(\Delta\)OBD (cmt) => \(\frac{AC}{OB}=\frac{OC}{OD}\) hay \(\frac{AC}{OA}=\frac{OC}{OD}\) (Do OA=OB)

=> \(\frac{AC}{OC}=\frac{OA}{OD}\)=> \(\Delta\)CAO ~ \(\Delta\)COD (Cạnh huyền cạnh góc vuông)

=> ^ACO=^OCD hay ^ACO=^MCO => \(\Delta\)CAO=\(\Delta\)CMO (Cạnh huyền góc nhọn)

=> AC=CM (đpcm).

6 tháng 4 2019

O A B C D I M H K

6 tháng 4 2019

Xét \(\Delta OAC\)và \(\Delta DBO\)có :

\(\widehat{CAO}=\widehat{DBO}\left(=90^o\right)\)\(\widehat{COA}=\widehat{ODB}\)( cùng phụ \(\widehat{DOB}\))

\(\Rightarrow\)\(\Delta OAC\)\(\Delta DBO\)( g . g )

\(\Rightarrow\)\(\frac{OA}{BD}=\frac{AC}{BO}\) \(\Rightarrow\)OA . OB = BD . AC \(\Rightarrow\)AB2 = 4BD . AC

b) \(\Delta OAC\)\(\Delta DBO\)(g.g) \(\Rightarrow\)\(\frac{AC}{AO}=\frac{OC}{OD}\)

xét \(\Delta OAC\)và \(\Delta DOC\)có : \(\frac{AC}{AO}=\frac{OC}{OD}\)\(\widehat{CAO}=\widehat{COD}=90^o\)

\(\Rightarrow\)\(\Delta OAC\)\(\Delta DOC\)(c.g.c) \(\Rightarrow\)\(\widehat{ACO}=\widehat{OCD}\)

xét \(\Delta OAC\)và \(\Delta MCO\)có : \(\widehat{ACO}=\widehat{OCD}\); CO ( chung )

\(\Rightarrow\)\(\Delta ACO=\Delta MCO\left(ch-gn\right)\)\(\Rightarrow\)CA = CM ; OA = OM ; 

c) OC là đường trung trực AM \(\Rightarrow\)OC \(\perp\)AM

Mặt khác : OA = OB = OM \(\Rightarrow\)\(\Delta AMB\)vuông tại M

\(\Rightarrow\)OC // BM

gọi gđ BM với AC là I

\(\Delta ABI\)có OC đi qua trung điểm AB và OC // BI \(\Rightarrow\)IC = AC

gọi K là gđ BC với MH

MH // AI \(\Rightarrow\)\(\frac{MK}{IC}=\frac{BK}{BC}=\frac{KH}{AC}\) \(\Rightarrow\)BK = KH 

\(\Rightarrow\)BC đi qua trung điểm MH

d) tứ giác ABDC là hình thang vuông \(\Rightarrow\)\(S_{ABDC}=\frac{1}{2}.\left(AC+BD\right).AB\)

Ta có : \(AC+BD\ge2\sqrt{AC.BD}=AB\)

\(\Rightarrow\)\(S_{ABDC}=\frac{1}{2}.\left(AC+BD\right).AB\ge\frac{1}{2}.AB^2\)

Dấu " = " xảy ra \(\Leftrightarrow\)AC = BD = \(\frac{AB}{2}=OA\)

Vậy C thuộc Ax và cách A 1 khoảng bằng OA

a: ΔABC vuông tại A

mà OA là trung tuyến

nên OA=OB

Xét ΔOAM vuông tại A và ΔOBM vuông tại B có 
OM  chung

OA=OB

=>ΔOAM=ΔOBM

=>MA=MB

b: OA=OB

MA=MB

=>OM là trung trực của AB

=>I là trung điểm của AB

6 tháng 10 2016

ko chứng minh đc bạn ak hình như đề sai thì phải

6 tháng 10 2016

bạn tìm ở sách toán bồi dưỡng có thể có đấy