Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Kiểm tra lại đề nha bạn. Chắc chắn là thiếu giả thiết rồi đó.
Bạn tự vẽ hình nha
a) ACD chắn nửa đường tròng => ACD = 90 => ECD = 90 độ
TG CEFD có ECD + EFD = 90 + 90 = 180 => CEFD nội tiếp
b), Vì tg CEFD nội tiếp => EFC = CDE ( cùng chắn cung CE ) (1)
ABCD nội tiếp => CDB = BAC ( cùng chắn cug BC ) (2)
CMTT BAFE là tứ giác nội tiếp => BFE = BAE ( cùng chắn cung BE ) hay BAC = BFE (3)
Từ (1) (2) và (3) => BFE = CFE
=> BFA = CFD ( cùng phụ hai góc bằng nhau ) mà CFD = AFM => BFA = AFM
=> FA là tia p/g BFM
c) VÌ BFE = EFN => EF là tia pg BFN => \(\frac{BF}{FN}=\frac{BE}{EN}\) ( tc đường p/g trong tam giác )
VÌ FA là tia pg BFM => FA là tia p/g góc ngoài của BFN ( Vì BFM ; BFN là hai góc kề bù )
=> \(\frac{BF}{FN}=\frac{DB}{DN}\left(II\right)\)
Từ (I) và ( II ) => \(\frac{BE}{EN}=\frac{BD}{DN}\Rightarrow BE\cdot DN=BD\cdot EN\)
d) TAm giác EFD vuông tại F có FK là trung tuyến => FK = KD => KFD cân tại K => KFD = KDF
MÀ KDF = BCA ( góc nội tiếp cùng chắn cung AB ) => KFD = BCA
TAm giác ECD vuông tại C có CK là tiếp tuyến => CK = KD => KCD = KDC mà CDK = BAC (CMT )
=> KCD = BAC mà EFB = BAC ( CMT ) => KCD = BFE => BFA = ECK ( cùng phụ hai góc bằng nhau )
TG BCKF có BCK + BFK = BCA + ECK + BFK = BFA + BFK + KFD = AFD = 180 độ
=> BCKF là tứ giác nội tiếp
Xem lại giúp mình nha ...............