K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

xét tứ giác `KJVT` có :

\(\hat{K}+\hat{J}+\hat{V}+\hat{T}=360^0\)

`=> 133^0 + 85^0 + x + x = 360^0`

`=> 218^0 + 2x = 360^0`

`=> 2x =360^0 - 218^0`

`=> 2x = 142^0`

`=> x = 142^0 : 2`

`=> x = 71^0`

Vậy `x = 71^0`

5 tháng 7

Giải:

\(x+x\) + 133\(^0\) + 85\(^0\) = 360\(^0\)

2\(x\) + (133\(^0\) + 85\(^0\)) = 360\(^0\) (tống bốn góc của tứ giác luôn bằng 360\(^0\))

2\(x\) + 218\(^0\) = 360\(^0\)

2\(x\) = 360\(^0\) - 218\(^0\)

2\(x\) = 142\(^0\)

\(x\) = 142\(^0\) : 2

\(x\) = 71\(^0\)

Bài 4:

a: \(2x^4+18x^2=0\)

=>\(2x^2\left(x^2+9\right)=0\)

=>\(x^2=0\) (Vì \(2\left(x^2+9\right)=2x^2+18\ge18>0\forall x\) )

=>x=0

b: (x-5)(x+5)-15x+75=0

=>(x-5)(x+5)-15(x-5)=0

=>(x-5)(x+5-15)=0

=>(x-5)(x-10)=0

=>\(\left[\begin{array}{l}x-5=0\\ x-10=0\end{array}\right.\Rightarrow\left[\begin{array}{l}x=5\\ x=10\end{array}\right.\)

c: \(x^4=x^2\)

=>\(x^4-x^2=0\)

=>\(x^2\left(x^2-1\right)=0\)

=>\(\left[\begin{array}{l}x^2=0\\ x^2-1=0\end{array}\right.\Rightarrow\left[\begin{array}{l}x^2=0\\ x^2=1\end{array}\right.\Rightarrow\left[\begin{array}{l}x=0\\ x=1\\ x=-1\end{array}\right.\)

d: \(12x\left(6x-1\right)-24x^2=0\)

=>12x(6x-1-2x)=0

=>x(4x-1)=0

=>\(\left[\begin{array}{l}x=0\\ 4x-1=0\end{array}\right.\Rightarrow\left[\begin{array}{l}x=0\\ x=\frac14\end{array}\right.\)

Bài 2:

a: 4x-16+3y(4-x)

=4(x-4)-3y(x-4)

=(x-4)(4-3y)

b: \(9y^2-6y+1=\left(3y\right)^2-2\cdot3y\cdot1+1^2=\left(3y-1\right)^2\)

c: \(25x^2-4=\left(5x\right)^2-2^2=\left(5x-2\right)\left(5x+2\right)\)

d: \(x^2-12x+36=x^2-2\cdot x\cdot6+6^2=\left(x-6\right)^2\)

e: \(8x^3+36x^2+54x+27\)

\(=\left(2x\right)^3+3\cdot\left(2x\right)^2\cdot3+3\cdot2x\cdot3^2+3^3\)

\(=\left(2x+3\right)^3\)

f: \(\left(2x-5\right)^2-\left(2x+y\right)^2\)

=(2x-5-2x-y)(2x-5+2x+y)

=(-y-5)(4x+y-5)

g: \(\left(2x-y\right)^3+\left(2x+y\right)^3\)

\(=8x^3-12x^2y+6xy^2-y^3+8x^3+12x^2y+6xy^2+y^3\)

\(=16x^3+12xy^2=4x\left(4x^2+3y^2\right)\)

Câu 1:

a: \(6x^2-72x=0\)

=>\(6\left(x^2-12x\right)=0\)

=>\(x^2-12x=0\)

=>x(x-12)=0

=>\(\left[\begin{array}{l}x=0\\ x-12=0\end{array}\right.\Rightarrow\left[\begin{array}{l}x=0\\ x=12\end{array}\right.\)

b: \(-2x^4+16x=0\)

=>\(-2x\left(x^3-8\right)=0\)

=>\(x\left(x^3-8\right)=0\)

=>\(\left[\begin{array}{l}x=0\\ x^3-8=0\end{array}\right.\Rightarrow\left[\begin{array}{l}x=0\\ x^3=8\end{array}\right.\Rightarrow\left[\begin{array}{l}x=0\\ x=2\end{array}\right.\)

c: \(\left(2x-1\right)^3-8x\left(x-3\right)\cdot\left(x+3\right)=-1\)

=>\(8x^3-12x^2+6x-1-8x\cdot\left(x^2-9\right)=-1\)

=>\(8x^3-12x^2+6x-1-8x^3+72x=-1\)

=>\(-12x^2+78x=0\)

=>-6x(2x-13)=0

=>x(2x-13)=0

=>\(\left[\begin{array}{l}x=0\\ 2x-13=0\end{array}\right.\Rightarrow\left[\begin{array}{l}x=0\\ x=\frac{13}{2}\end{array}\right.\)

d: \(x\left(x-5\right)-\left(x-3\right)^2=0\)

=>\(x^2-5x-\left(x^2-6x+9\right)=0\)

=>\(x^2-5x-x^2+6x-9=0\)

=>x-9=0

=>x=9

e: \(x\left(x-5\right)+3\left(x-5\right)=0\)

=>(x-5)(x+3)=0

=>\(\left[\begin{array}{l}x-5=0\\ x+3=0\end{array}\right.\Rightarrow\left[\begin{array}{l}x=5\\ x=-3\end{array}\right.\)

f: 2x(x-8)-5(8-x)=0

=>2x(x-8)+5(x-8)=0

=>(x-8)(2x+5)=0

=>\(\left[\begin{array}{l}x-8=0\\ 2x+5=0\end{array}\right.\Rightarrow\left[\begin{array}{l}x=8\\ x=-\frac52\end{array}\right.\)

g: \(30x-15x^2=0\)

=>15x(2-x)=0

=>x(2-x)=0

=>\(\left[\begin{array}{l}x=0\\ 2-x=0\end{array}\right.\Rightarrow\left[\begin{array}{l}x=0\\ x=2\end{array}\right.\)

h: \(-4x^3-12x=0\)

=>\(-4x\left(x^2+3\right)=0\)

=>x=0

4 tháng 9

Tham khảo

15 tháng 8 2017

\(A=\sqrt{9-x^2}+4\)  Đạt Max khi \(\sqrt{9-x^2}\)đạt giá trị lớn nhất. Hay (9-x2) đạt giá trị lớn nhất.

Do x2 \(\ge\)0 với mọi x => để 9-x2 đạt giá trị lớn nhất thì x2 phải đạt GTNN => x2=0 => x=0

=> \(A_{max}=\sqrt{9}+4=3+4=7\)đạt được khi x=0

b/ \(B=6\sqrt{x}-x-15=-x+6\sqrt{x}-9-6=-6-\left(x-6\sqrt{x}+9\right)\)

=> \(B=-6-\left(\sqrt{x}-3\right)^2\)

Do \(\left(\sqrt{x}-3\right)^2\ge0\) Với mọi x => Để Bmax thì \(\left(\sqrt{x}-3\right)^2\) đạt Min => \(\left(\sqrt{x}-3\right)^2=0\)

=> Bmin=-6  đạt được khi \(\left(\sqrt{x}-3\right)^2=0\)hay x=9

15 tháng 8 2017

c/ \(C=2\sqrt{x}-x=1-1+2\sqrt{x}-x=1-\left(1-2\sqrt{x}+x\right)\)

=> \(C=1-\left(1-\sqrt{x}\right)^2\)  => Do \(\left(1-\sqrt{x}\right)^2\ge0\) Với mọi x => Để C đạt max thì \(\left(1-\sqrt{x}\right)^2\)đạt min => \(\left(1-\sqrt{x}\right)^2=0\) 

=> Cmin = 1 Đạt được khi x=1

16 tháng 10 2016

a)\(2x\left(x-2016\right)-2x+4032=0\)

\(\Leftrightarrow2x\left(x-2016\right)-2\left(x-2016\right)=0\)

\(\Leftrightarrow\left(2x-2\right)\left(x-2016\right)=0\)

\(\Leftrightarrow2\left(x-1\right)\left(x-2016\right)=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}x-1=0\\x-2016=0\end{array}\right.\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}x=1\\x=2016\end{array}\right.\)

b)\(5x\left(x-3\right)=x-3\)

\(\Leftrightarrow5x\left(x-3\right)-\left(x-3\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(5x-1\right)=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}x-3=0\\5x-1=0\end{array}\right.\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}x=3\\x=\frac{1}{5}\end{array}\right.\)

c)\(\left(3x-1\right)^2=\left(x+2\right)^2\)

\(\Leftrightarrow\left(3x-1\right)^2-\left(x+2\right)^2=0\)

\(\Leftrightarrow\left(3x-1+x+2\right)\left[\left(3x-1\right)-\left(x+2\right)\right]=0\)

\(\Leftrightarrow\left(4x+1\right)\left(2x-3\right)=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}4x+1=0\\2x-3=0\end{array}\right.\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}x=-\frac{1}{4}\\x=\frac{3}{2}\end{array}\right.\)

 

 

 

 

 

16 tháng 10 2016

thank you very much !

24 tháng 10 2016

Mink nghĩ đề này là phân tích đa thức thành nhân tử chứ k phải tìm x^^

a) \(x^2-x-56=x^2-8x+7x-56=x\left(x-8\right)+7\left(x-8\right)=\left(x+7\right)\left(x-8\right)\)

b) \(4x^4+1=\left(4x^4+4x^2+1\right)-4x^2=\left(2x^2+1\right)^2-\left(2x\right)^2\)

\(\left(2x^2+1-2x\right)\left(2x^2+1+2x\right)\)

c) \(5x^2-x-4=5x^2-5x+4x-4=5x\left(x-1\right)+4\left(x-1\right)=\left(x-1\right)\left(5x+4\right)\)

d) \(4x^4+81=\left(4x^4+36x^2+81\right)-36x^2=\left(2x^2+9\right)^2-\left(6x\right)^2\)

\(=\left(2x^2+9+6x\right)\left(2x^2+9-6x\right)\)

e) \(64x^4+y^4=\left(64x^4+16x^2y^2+y^4\right)-\left(4xy\right)^2=\left(8x^2+y^2\right)^2-\left(4xy\right)^2\)

\(=\left(8x^2+y^2-4xy\right)\left(8x^2+y^2+4xy\right)\)

 

24 tháng 10 2016

a)\(x^2-x-56\)

\(=x^2+7x-8x-56\)

\(=x\left(x+7\right)-8\left(x+7\right)\)

\(=\left(x-8\right)\left(x+7\right)\)

b)\(4x^4+1\)

\(=\left(2x+1\right)^2-4x^2\)

\(=\left(2x^2-2x+1\right)\left(2x^2+2x+1\right)\)

c)\(5x^2-x-4\)

\(=5x^2+4x-5x-4\)

\(=x\left(5x+4\right)-\left(5x+4\right)\)

\(=\left(x-1\right)\left(5x+4\right)\)

d)\(4x^4+81\)

\(=\left(2x^2\right)^2+9^2+36x^2-36x^2\)

\(=\left(2x^2+9\right)^2-36x^2\)

\(=\left(2x^2-6x+9\right)\left(2x^2+6x+9\right)\)

e)\(64x^4+y^4\)

\(=\left(8x^2\right)^2+y^4+16x^2y^2-16x^2y^2\)

\(=\left(8x^2+y^2\right)^2-\left(4xy\right)^2\)

\(=\left(8x^2+y^2-4xy\right)\left(8x^2+y^2+4xy\right)\)

 

 

21 tháng 12 2019

a, Để \(A\in Z\)thì:

\(2⋮x-1\)

\(\Rightarrow x-1\inƯ\left(2\right)=\left\{-2;-1;1;2\right\}\)

Ta có bảng sau:

x-1 -2-112
x-1023

Vậy x={-1;0;2;3}

21 tháng 12 2019

Có \(B=\frac{x+3}{x-1}=\frac{\left(x-1\right)+4}{x-1}=1+\frac{4}{x-1}\)

Để  \(B\in Z\)thì

\(4⋮x-1\)

\(\Rightarrow x-1\inƯ\left(4\right)=\left\{-4;-2;-1;1;2;4\right\}\)

Ta có bảng sau:

x-1-4-2-1124
x-3-10235

Vậy x={-3;-1;0;2;3;5}

24 tháng 8

Olm chào em, đây là dạng toán nâng cao chuyên đề phép chia đa thức, cấu trúc thi chuyên, thi học sinh giỏi các cấp. Hôm nay, Olm sẽ hướng dẫn các em giải chi tiết dạng này như sau:

Giải:

(\(x^3-3x^2-3x-1)\) ⋮ (\(x^2+x+1\))

[(\(x^3+x^2+x)\) - 4(\(x^2+x+1\)) + 3] ⋮ (\(x^2+x+1\))

3 ⋮ (\(x^2+x+1\))

\(\left(x^2+x+1\right)\inƯ\left(3\right)=\left\lbrace-3;-1;1;3\right\rbrace\)

\(x^2+x+1\) = (\(x+\frac12\))\(^2\) + \(\frac34\)\(\frac34\)\(x\)

⇒ (\(x^2+x+1)\) ∈ {1; 3}

TH1: \(x^2+x+1\) = 1

\(x^2+x=0\)

\(x\left(x+1\right)=0\)

\(\left[\begin{array}{l}x=0\\ x+1=0\end{array}\right.\)

\(\left[\begin{array}{l}x=0\\ x=-1\end{array}\right.\)

TH2: \(x^2+x+1\) = 3

\(x^2+x=2\)

\(x^2+x-2=0\)

(\(x^2-x\)) + (\(2x-2\)) = 0

\(x\left(x-1\right)\) + 2(\(x-1\)) = 0

(\(x-1\))(\(x+2)=0\)

\(\left[\begin{array}{l}x-1=0\\ x+2=0\end{array}\right.\)

\(\left[\begin{array}{l}x=1\\ x=-2\end{array}\right.\)

Kết hợp 2 trường hợp ta có: \(x\in\) {-2; -1; 0; 1}

22 tháng 8 2016

(3-12x)(x-1)+(12x-8)(x+2)+x2=52

3(x-1)-12x(x-1)+12x(x+2)-8(x+2)+x2=52

3x-3-12x2+12+12x2+24x-8x-16+x2=52

(3x+24x-8x)+(12-3-16)+(12x2-12x2+x2)=52

19x-7+x2=52

x(19-x)=52+7=59

mà 59 là số ng tố nên x rỗng

Vậy x E \(\theta\)

\(\Leftrightarrow\frac{1}{\left(x+4\right)\left(x+5\right)}+\frac{1}{\left(x+5\right)\left(x+6\right)}+\frac{1}{\left(x+6\right)\left(x+7\right)}=\frac{1}{18}\)

\(\Leftrightarrow\frac{1}{x+4}-\frac{1}{x+5}+\frac{1}{x+5}-\frac{1}{x+6}+\frac{1}{x+6}-\frac{1}{x+7}=\frac{1}{18}\)

\(\Leftrightarrow\frac{1}{x+4}-\frac{1}{x+7}=\frac{1}{18}\)

\(\Leftrightarrow\frac{3}{x^2+11x+28}=\frac{1}{18}\)

\(\Rightarrow x^2+11x-26=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+13\right)=0\Rightarrow\hept{\begin{cases}x=2\\x=-13\end{cases}}\)

14 tháng 1 2018

\(\Leftrightarrow\frac{1}{\left(x+4\right)\left(x+5\right)}+\frac{1}{\left(x+5\right)\left(x-6\right)}+\frac{1}{\left(x-6\right)\left(x+7\right)}=\frac{1}{18}\)\(\frac{1}{18}\)

\(\Leftrightarrow\frac{1}{x+4}-\frac{1}{x-5}+\frac{1}{x+5}-\frac{1}{x+6}+\frac{1}{x+6}-\frac{1}{x+7}=\frac{1}{18}\)

\(\Leftrightarrow\frac{1}{x+4}-\frac{1}{x+7}=\frac{1}{18}\)

\(\Leftrightarrow x^2+11x-26=0\Leftrightarrow\hept{\begin{cases}x=2\\x=-13\end{cases}}\)

Vậy..........