
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Bài 4:
a: \(2x^4+18x^2=0\)
=>\(2x^2\left(x^2+9\right)=0\)
=>\(x^2=0\) (Vì \(2\left(x^2+9\right)=2x^2+18\ge18>0\forall x\) )
=>x=0
b: (x-5)(x+5)-15x+75=0
=>(x-5)(x+5)-15(x-5)=0
=>(x-5)(x+5-15)=0
=>(x-5)(x-10)=0
=>\(\left[\begin{array}{l}x-5=0\\ x-10=0\end{array}\right.\Rightarrow\left[\begin{array}{l}x=5\\ x=10\end{array}\right.\)
c: \(x^4=x^2\)
=>\(x^4-x^2=0\)
=>\(x^2\left(x^2-1\right)=0\)
=>\(\left[\begin{array}{l}x^2=0\\ x^2-1=0\end{array}\right.\Rightarrow\left[\begin{array}{l}x^2=0\\ x^2=1\end{array}\right.\Rightarrow\left[\begin{array}{l}x=0\\ x=1\\ x=-1\end{array}\right.\)
d: \(12x\left(6x-1\right)-24x^2=0\)
=>12x(6x-1-2x)=0
=>x(4x-1)=0
=>\(\left[\begin{array}{l}x=0\\ 4x-1=0\end{array}\right.\Rightarrow\left[\begin{array}{l}x=0\\ x=\frac14\end{array}\right.\)
Bài 2:
a: 4x-16+3y(4-x)
=4(x-4)-3y(x-4)
=(x-4)(4-3y)
b: \(9y^2-6y+1=\left(3y\right)^2-2\cdot3y\cdot1+1^2=\left(3y-1\right)^2\)
c: \(25x^2-4=\left(5x\right)^2-2^2=\left(5x-2\right)\left(5x+2\right)\)
d: \(x^2-12x+36=x^2-2\cdot x\cdot6+6^2=\left(x-6\right)^2\)
e: \(8x^3+36x^2+54x+27\)
\(=\left(2x\right)^3+3\cdot\left(2x\right)^2\cdot3+3\cdot2x\cdot3^2+3^3\)
\(=\left(2x+3\right)^3\)
f: \(\left(2x-5\right)^2-\left(2x+y\right)^2\)
=(2x-5-2x-y)(2x-5+2x+y)
=(-y-5)(4x+y-5)
g: \(\left(2x-y\right)^3+\left(2x+y\right)^3\)
\(=8x^3-12x^2y+6xy^2-y^3+8x^3+12x^2y+6xy^2+y^3\)
\(=16x^3+12xy^2=4x\left(4x^2+3y^2\right)\)
Câu 1:
a: \(6x^2-72x=0\)
=>\(6\left(x^2-12x\right)=0\)
=>\(x^2-12x=0\)
=>x(x-12)=0
=>\(\left[\begin{array}{l}x=0\\ x-12=0\end{array}\right.\Rightarrow\left[\begin{array}{l}x=0\\ x=12\end{array}\right.\)
b: \(-2x^4+16x=0\)
=>\(-2x\left(x^3-8\right)=0\)
=>\(x\left(x^3-8\right)=0\)
=>\(\left[\begin{array}{l}x=0\\ x^3-8=0\end{array}\right.\Rightarrow\left[\begin{array}{l}x=0\\ x^3=8\end{array}\right.\Rightarrow\left[\begin{array}{l}x=0\\ x=2\end{array}\right.\)
c: \(\left(2x-1\right)^3-8x\left(x-3\right)\cdot\left(x+3\right)=-1\)
=>\(8x^3-12x^2+6x-1-8x\cdot\left(x^2-9\right)=-1\)
=>\(8x^3-12x^2+6x-1-8x^3+72x=-1\)
=>\(-12x^2+78x=0\)
=>-6x(2x-13)=0
=>x(2x-13)=0
=>\(\left[\begin{array}{l}x=0\\ 2x-13=0\end{array}\right.\Rightarrow\left[\begin{array}{l}x=0\\ x=\frac{13}{2}\end{array}\right.\)
d: \(x\left(x-5\right)-\left(x-3\right)^2=0\)
=>\(x^2-5x-\left(x^2-6x+9\right)=0\)
=>\(x^2-5x-x^2+6x-9=0\)
=>x-9=0
=>x=9
e: \(x\left(x-5\right)+3\left(x-5\right)=0\)
=>(x-5)(x+3)=0
=>\(\left[\begin{array}{l}x-5=0\\ x+3=0\end{array}\right.\Rightarrow\left[\begin{array}{l}x=5\\ x=-3\end{array}\right.\)
f: 2x(x-8)-5(8-x)=0
=>2x(x-8)+5(x-8)=0
=>(x-8)(2x+5)=0
=>\(\left[\begin{array}{l}x-8=0\\ 2x+5=0\end{array}\right.\Rightarrow\left[\begin{array}{l}x=8\\ x=-\frac52\end{array}\right.\)
g: \(30x-15x^2=0\)
=>15x(2-x)=0
=>x(2-x)=0
=>\(\left[\begin{array}{l}x=0\\ 2-x=0\end{array}\right.\Rightarrow\left[\begin{array}{l}x=0\\ x=2\end{array}\right.\)
h: \(-4x^3-12x=0\)
=>\(-4x\left(x^2+3\right)=0\)
=>x=0

\(A=\sqrt{9-x^2}+4\) Đạt Max khi \(\sqrt{9-x^2}\)đạt giá trị lớn nhất. Hay (9-x2) đạt giá trị lớn nhất.
Do x2 \(\ge\)0 với mọi x => để 9-x2 đạt giá trị lớn nhất thì x2 phải đạt GTNN => x2=0 => x=0
=> \(A_{max}=\sqrt{9}+4=3+4=7\)đạt được khi x=0
b/ \(B=6\sqrt{x}-x-15=-x+6\sqrt{x}-9-6=-6-\left(x-6\sqrt{x}+9\right)\)
=> \(B=-6-\left(\sqrt{x}-3\right)^2\)
Do \(\left(\sqrt{x}-3\right)^2\ge0\) Với mọi x => Để Bmax thì \(\left(\sqrt{x}-3\right)^2\) đạt Min => \(\left(\sqrt{x}-3\right)^2=0\)
=> Bmin=-6 đạt được khi \(\left(\sqrt{x}-3\right)^2=0\)hay x=9
c/ \(C=2\sqrt{x}-x=1-1+2\sqrt{x}-x=1-\left(1-2\sqrt{x}+x\right)\)
=> \(C=1-\left(1-\sqrt{x}\right)^2\) => Do \(\left(1-\sqrt{x}\right)^2\ge0\) Với mọi x => Để C đạt max thì \(\left(1-\sqrt{x}\right)^2\)đạt min => \(\left(1-\sqrt{x}\right)^2=0\)
=> Cmin = 1 Đạt được khi x=1

a)\(2x\left(x-2016\right)-2x+4032=0\)
\(\Leftrightarrow2x\left(x-2016\right)-2\left(x-2016\right)=0\)
\(\Leftrightarrow\left(2x-2\right)\left(x-2016\right)=0\)
\(\Leftrightarrow2\left(x-1\right)\left(x-2016\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x-1=0\\x-2016=0\end{array}\right.\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=1\\x=2016\end{array}\right.\)
b)\(5x\left(x-3\right)=x-3\)
\(\Leftrightarrow5x\left(x-3\right)-\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(5x-1\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x-3=0\\5x-1=0\end{array}\right.\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=3\\x=\frac{1}{5}\end{array}\right.\)
c)\(\left(3x-1\right)^2=\left(x+2\right)^2\)
\(\Leftrightarrow\left(3x-1\right)^2-\left(x+2\right)^2=0\)
\(\Leftrightarrow\left(3x-1+x+2\right)\left[\left(3x-1\right)-\left(x+2\right)\right]=0\)
\(\Leftrightarrow\left(4x+1\right)\left(2x-3\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}4x+1=0\\2x-3=0\end{array}\right.\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=-\frac{1}{4}\\x=\frac{3}{2}\end{array}\right.\)

Mink nghĩ đề này là phân tích đa thức thành nhân tử chứ k phải tìm x^^
a) \(x^2-x-56=x^2-8x+7x-56=x\left(x-8\right)+7\left(x-8\right)=\left(x+7\right)\left(x-8\right)\)
b) \(4x^4+1=\left(4x^4+4x^2+1\right)-4x^2=\left(2x^2+1\right)^2-\left(2x\right)^2\)
\(\left(2x^2+1-2x\right)\left(2x^2+1+2x\right)\)
c) \(5x^2-x-4=5x^2-5x+4x-4=5x\left(x-1\right)+4\left(x-1\right)=\left(x-1\right)\left(5x+4\right)\)
d) \(4x^4+81=\left(4x^4+36x^2+81\right)-36x^2=\left(2x^2+9\right)^2-\left(6x\right)^2\)
\(=\left(2x^2+9+6x\right)\left(2x^2+9-6x\right)\)
e) \(64x^4+y^4=\left(64x^4+16x^2y^2+y^4\right)-\left(4xy\right)^2=\left(8x^2+y^2\right)^2-\left(4xy\right)^2\)
\(=\left(8x^2+y^2-4xy\right)\left(8x^2+y^2+4xy\right)\)
a)\(x^2-x-56\)
\(=x^2+7x-8x-56\)
\(=x\left(x+7\right)-8\left(x+7\right)\)
\(=\left(x-8\right)\left(x+7\right)\)
b)\(4x^4+1\)
\(=\left(2x+1\right)^2-4x^2\)
\(=\left(2x^2-2x+1\right)\left(2x^2+2x+1\right)\)
c)\(5x^2-x-4\)
\(=5x^2+4x-5x-4\)
\(=x\left(5x+4\right)-\left(5x+4\right)\)
\(=\left(x-1\right)\left(5x+4\right)\)
d)\(4x^4+81\)
\(=\left(2x^2\right)^2+9^2+36x^2-36x^2\)
\(=\left(2x^2+9\right)^2-36x^2\)
\(=\left(2x^2-6x+9\right)\left(2x^2+6x+9\right)\)
e)\(64x^4+y^4\)
\(=\left(8x^2\right)^2+y^4+16x^2y^2-16x^2y^2\)
\(=\left(8x^2+y^2\right)^2-\left(4xy\right)^2\)
\(=\left(8x^2+y^2-4xy\right)\left(8x^2+y^2+4xy\right)\)

a, Để \(A\in Z\)thì:
\(2⋮x-1\)
\(\Rightarrow x-1\inƯ\left(2\right)=\left\{-2;-1;1;2\right\}\)
Ta có bảng sau:
x-1 | -2 | -1 | 1 | 2 |
x | -1 | 0 | 2 | 3 |
Vậy x={-1;0;2;3}

Olm chào em, đây là dạng toán nâng cao chuyên đề phép chia đa thức, cấu trúc thi chuyên, thi học sinh giỏi các cấp. Hôm nay, Olm sẽ hướng dẫn các em giải chi tiết dạng này như sau:
Giải:
(\(x^3-3x^2-3x-1)\) ⋮ (\(x^2+x+1\))
[(\(x^3+x^2+x)\) - 4(\(x^2+x+1\)) + 3] ⋮ (\(x^2+x+1\))
3 ⋮ (\(x^2+x+1\))
\(\left(x^2+x+1\right)\inƯ\left(3\right)=\left\lbrace-3;-1;1;3\right\rbrace\)
\(x^2+x+1\) = (\(x+\frac12\))\(^2\) + \(\frac34\) ≥ \(\frac34\) ∀ \(x\)
⇒ (\(x^2+x+1)\) ∈ {1; 3}
TH1: \(x^2+x+1\) = 1
\(x^2+x=0\)
\(x\left(x+1\right)=0\)
\(\left[\begin{array}{l}x=0\\ x+1=0\end{array}\right.\)
\(\left[\begin{array}{l}x=0\\ x=-1\end{array}\right.\)
TH2: \(x^2+x+1\) = 3
\(x^2+x=2\)
\(x^2+x-2=0\)
(\(x^2-x\)) + (\(2x-2\)) = 0
\(x\left(x-1\right)\) + 2(\(x-1\)) = 0
(\(x-1\))(\(x+2)=0\)
\(\left[\begin{array}{l}x-1=0\\ x+2=0\end{array}\right.\)
\(\left[\begin{array}{l}x=1\\ x=-2\end{array}\right.\)
Kết hợp 2 trường hợp ta có: \(x\in\) {-2; -1; 0; 1}

(3-12x)(x-1)+(12x-8)(x+2)+x2=52
3(x-1)-12x(x-1)+12x(x+2)-8(x+2)+x2=52
3x-3-12x2+12+12x2+24x-8x-16+x2=52
(3x+24x-8x)+(12-3-16)+(12x2-12x2+x2)=52
19x-7+x2=52
x(19-x)=52+7=59
mà 59 là số ng tố nên x rỗng
Vậy x E \(\theta\)

\(\Leftrightarrow\frac{1}{\left(x+4\right)\left(x+5\right)}+\frac{1}{\left(x+5\right)\left(x+6\right)}+\frac{1}{\left(x+6\right)\left(x+7\right)}=\frac{1}{18}\)
\(\Leftrightarrow\frac{1}{x+4}-\frac{1}{x+5}+\frac{1}{x+5}-\frac{1}{x+6}+\frac{1}{x+6}-\frac{1}{x+7}=\frac{1}{18}\)
\(\Leftrightarrow\frac{1}{x+4}-\frac{1}{x+7}=\frac{1}{18}\)
\(\Leftrightarrow\frac{3}{x^2+11x+28}=\frac{1}{18}\)
\(\Rightarrow x^2+11x-26=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+13\right)=0\Rightarrow\hept{\begin{cases}x=2\\x=-13\end{cases}}\)
\(\Leftrightarrow\frac{1}{\left(x+4\right)\left(x+5\right)}+\frac{1}{\left(x+5\right)\left(x-6\right)}+\frac{1}{\left(x-6\right)\left(x+7\right)}=\frac{1}{18}\)\(\frac{1}{18}\)
\(\Leftrightarrow\frac{1}{x+4}-\frac{1}{x-5}+\frac{1}{x+5}-\frac{1}{x+6}+\frac{1}{x+6}-\frac{1}{x+7}=\frac{1}{18}\)
\(\Leftrightarrow\frac{1}{x+4}-\frac{1}{x+7}=\frac{1}{18}\)
\(\Leftrightarrow x^2+11x-26=0\Leftrightarrow\hept{\begin{cases}x=2\\x=-13\end{cases}}\)
Vậy..........
xét tứ giác `KJVT` có :
\(\hat{K}+\hat{J}+\hat{V}+\hat{T}=360^0\)
`=> 133^0 + 85^0 + x + x = 360^0`
`=> 218^0 + 2x = 360^0`
`=> 2x =360^0 - 218^0`
`=> 2x = 142^0`
`=> x = 142^0 : 2`
`=> x = 71^0`
Vậy `x = 71^0`
Giải:
\(x+x\) + 133\(^0\) + 85\(^0\) = 360\(^0\)
2\(x\) + (133\(^0\) + 85\(^0\)) = 360\(^0\) (tống bốn góc của tứ giác luôn bằng 360\(^0\))
2\(x\) + 218\(^0\) = 360\(^0\)
2\(x\) = 360\(^0\) - 218\(^0\)
2\(x\) = 142\(^0\)
\(x\) = 142\(^0\) : 2
\(x\) = 71\(^0\)