Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tổng của góc C và D là:
3600 - góc A - góc B = 3600 - 600 - 800 = 2200
Số đo góc C là:
(220 + 10) : 2 = 1150
Số đo góc D là:
115 - 10 = 1050
nhầm.
Ta có: \(A+B+C+D=360^o\)
\(\Rightarrow C+D=360-80-60\)
\(=220^o\)
Lại có:\(C-D=105^O\)
Vậy góc C=220 độ, góc D= 105 độ
\(\Rightarrow C=\left(220+10\right):2=115^o\)
\(D=115-10=105^o\)
Theo bài ra ta có : ^A + ^B + ^C + ^D = 360o (*)và ^C - ^D = 350 (1)
(1) => ^C = 350 + ^D Thay vào (*) ta được
^A + ^B + 350 + ^D + ^D = 3600
<=> 1850 + 2^D = 3600 <=> 2^D = 175 <=> ^D = 87,50
=> ^C = 350 + 87,50 = 122,50
Câu 1: Ta có: 3D = A => A = 45 x 3 = 135 (độ)
Vì A + D = 180(độ) =>AB // CD => Tứ giác ABCD là hình thang.
Mà B = C => ABCD là hình thang cân.
Câu 2: Độ dài cạnh DC là : 3.5 + 1.5 = 4 (cm)
Vì H là đường cao của hình thang ABCD => AH vuông góc với CD.
Tam giác vuông ADH có:
AH ^ 2 + HD ^2 = AD ^ 2
=> 4 + 2.25 = AD ^ 2
=> AD ^ 2 =6.25 =2.5 ^ 2 => AD = 2.5(cm)
Vì ABCD là hình thang cân => AD = BC =2.5(cm)
Ta kẻ BE vuông góc với DC.
Vì tứ giác ABCD là hình thang cân nên
=> Tam giác ADH = Tam giác BCE
=> HD = EC = 1.5 (cm)
AH = BE = 2 (cm)
Mặt khác:Xét tam giác vuông AHE và tam giác vuông EBA có :
AH = BE (theo c/m trên)
AE cạnh chung
=> Tam giác AHE = Tam giác EBA ( Ch - cgv)
=> AB = EH
Mà EH = HC - HD - EC = 3.5 -1.5 - 1.5 = 0.5 (cm)
Chu vi của hình thang cân ABCD là:
4 + 2.5 + 2.5 + 0.5 = 9.5
Bài mik hơi dài .... xl bạn
Ta có: \(\widehat{A}-\widehat{D}=10\Rightarrow\widehat{A}-80=10\Rightarrow\widehat{A}=90\)
Mặt khác: Tổng 4 góc của 1 tứ giác là 360 độ
\(\Rightarrow\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}=360\Rightarrow\widehat{90}+\widehat{B}+60+80=360\Rightarrow\widehat{B}=360-90-60-80\Rightarrow\widehat{B}=130\)
(Mình không biết viết kí hiệu độ nên bạn chịu khó để ý chỗ nào cần thêm kí hiệu độ thì thêm vào nhé)
Tổng số đo của góc A và góc B là:
3600 - góc C - góc D = 3600 - 600 - 800 = 2200
Góc A = (220 + 10) : 2 = 1150
Góc B = 1150 - 10 = 1050
Tứ giác ABCD có:
\(A+B+C+D=360^0\)
\(120^0+110^0+80^0+D=360^0\)
\(D=360^0-120^0-110^0-80^0\)
\(D=50^0\)
Góc ngoài ở đỉnh D + D = 1800
Góc ngoài ở đỉnh D + 500 = 1800
Góc ngoài ở đỉnh D = 1800 - 500
Góc ngoài ở đỉnh D = 1300
Câu trả lời hay nhất: Ta có: góc A+B+C+D=360 =>C+D=150 độ
Tính góc CED + EDC=1/2C+1/2D=1/2(C+D)=75(do phân giác)
=>E=180-75=105
ta có góc tạo bởi 2 tia phân giác của 2 góc kề có tổng là 90 độ (có cm trong sgk)
nên ECF+EDF=90+80=180 độ
=>CFD= 360-180-105=75
Xong rồi,n\bạn lập luận chặt chẽ hơn nhé
Hix.bài mình làm không xong lo đi làm cho người ta!!!!!!!
Giải:
Xét tứ giác ABCD có:
\(\widehat{A}\)+ \(\widehat{B}\) + \(\widehat{C}\) + \(\widehat{D}\) = 3600(tổng bốn góc của tứ giác bằng 1800)
⇒ \(\widehat{A}\) + \(\widehat{D}\) = 3600 - \(\widehat{B}\) + \(\widehat{C}\)
⇒ \(\widehat{A}\) + \(\widehat{D}\) = 3600 - 460 - 800
⇒ \(\widehat{A}\) + \(\widehat{D}\) = 2340 (1)
Mặt khác: \(\widehat{D}\) = 2 x \(\widehat{A}\) (gt)
Thay \(\widehat{D}\) = 2 x \(\widehat{A}\) vào (1) ta có:
\(\widehat{A}\) + 2 x \(\widehat{A}\) = 2340
⇒ 3 x \(\widehat{A}\) = 2340
⇒ \(\widehat{A}\) = 2340 : 3
⇒ \(\widehat{A}\) = 780
Thay \(\widehat{A}\) = 780 vào \(\widehat{D}\) = 2 x \(\widehat{A}\) ta có:
\(\widehat{D}\) = 2 x 780
\(\widehat{D}\) = 1560
Vậy \(\widehat{A}\) = 780; \(\widehat{D}\) = 1560