Tứ giác ABCD nội tiếp (O). Gọi M là giao điểm của 2 đường chéo, M khác O. Đường thẳng vuông góc với...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 1 2018

A B D C M P Q I K R E F

a) Gọi I, K lần lượt là trung điểm của AP và DP. Ta có :

IK song song và bằng 1/2 AD hay bằng 1/2 BC.

KM = DM - DK = DC/2 - DP / 2 = PC/2

Mà \(\widehat{IKM}=\widehat{ADC}=\widehat{BCP}\)

\(\Rightarrow\Delta IKM\sim\Delta BCP\left(c-g-c\right)\Rightarrow\widehat{BPC}=\widehat{IMP}\)

Mà \(\widehat{BPC}=\widehat{ABP}\) (AB // PC) ; \(\widehat{ABP}=\widehat{AQR}\) (Hai góc nội tiếp cùng chắn cung AR)

Do đó \(\widehat{IME}=\widehat{IQE}\Rightarrow\) Tứ giác IMQE nội tiếp.

\(\Rightarrow\widehat{EIQ}=\widehat{EMQ}\)

Mà IE // AF (Đường trung bình) nên \(\widehat{IEQ}=\widehat{FAQ}\)  (Đồng vị) 

\(\Rightarrow\widehat{FAQ}=\widehat{FMQ}\) hay tứ giác AMQF nội tiếp.

Do đó đường tròn ngoại tiếp tam giác AQF đi qua A, M cố định.

Vậy tâm đường tròn thuộc đường trung trực của AM.

b) Ta có \(\widehat{EPR}=\widehat{BPC}=\widehat{ABP}=\widehat{AQE}\) nên \(\Delta EPR\sim\Delta EQP\left(g-g\right)\Rightarrow\frac{EP}{EQ}=\frac{ER}{EP}\Rightarrow EP^2=ER.EQ\)

Vì AE là tiếp tuyến nên \(\widehat{EAR}=\widehat{AQE}\Rightarrow\Delta EAR\sim\Delta EQA\left(g-g\right)\Rightarrow\frac{EA}{EQ}=\frac{ER}{EA}\Rightarrow EA^2=EQ.ER\)

\(\Rightarrow EP^2=EA^2\Rightarrow EP=EA=EF\)

\(\Rightarrow\widehat{FAP}=90^o\Rightarrow\widehat{FMQ}=90^o\) (Hai góc nội tiếp cùng chắn cung FQ)

\(\Rightarrow MQ\perp CD\)

3 tháng 2 2016

Em mới học lớp 5.

Xin olm đừng xóa

1 . Cho hình vuông ABCD. Gọi O là giao điểm của hai đường chéo. Qua điểm C kẻ đường thẳng Cx song song với BD; Cx cắt AB tại E.a) Chứng minh tam giác ACE vuông cânb) Gọi F là điểm đối xứng của O qua AB. Tứ giác AOBF là hình gì? Vì sao?c) Giả sử APCQ là hình thoi có chung đường chéo AC với hình vuông ABCD. Hãy chứng tỏ 4 điểm P, D, B, Q thẳng hàng Bài 2:Đường tròn tâm O và một dây AB của đường...
Đọc tiếp

1 . Cho hình vuông ABCD. Gọi O là giao điểm của hai đường chéo. Qua điểm C kẻ đường thẳng Cx song song với BD; Cx cắt AB tại E.

a) Chứng minh tam giác ACE vuông cân

b) Gọi F là điểm đối xứng của O qua AB. Tứ giác AOBF là hình gì? Vì sao?

c) Giả sử APCQ là hình thoi có chung đường chéo AC với hình vuông ABCD. Hãy chứng tỏ 4 điểm P, D, B, Q thẳng hàng 

Bài 2:Đường tròn tâm O và một dây AB của đường tròn đó. Các tiếp tuyến vẽ từ A và B của đường tròn cắt nhau tại C. D là một điểm trên đường tròn có đường kính OC (D khác A và B). CD cắt cung AB của đường tròn (O) tại E (E nằm giữa C và D). Chứng minh:

a) Góc BED = góc DAE

b) DE2 = DA.DB

Bài 3:Cho (O) dây AB vuông góc dây CD M là trung điểm BC. Chứng minh rằng OM=1/2AD

 

0