Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tứ giác ABCD có
⇒ ABCD là tứ giác nội tiếp
Gọi O là tâm đường tròn ngoại tiếp tứ giác ABCD
⇒ OA = OB = OC = OD = R
Do OA= OC nên ΔOAC cân tại O, đường trung tuyến kẻ từ O cũng chính là đường cao của tam giác. Suy ra, O thuộc đường trung trực của AC.
Do OB= OD nên ΔOBD cân tại O, đường trung tuyến kẻ từ O cũng chính là đường cao của tam giác. Suy ra, O thuộc đường trung trực của BD
Do OA= OB nên ΔOAB cân tại O, đường trung tuyến kẻ từ O cũng chính là đường cao của tam giác. Suy ra, O thuộc đường trung trực của AB.
⇒ O thuộc đường trung trực của AC, BD, AB .
Vậy các đường trung trực của AC, BD, AB cùng đi qua O.
- Tứ giác ABCD có \(\widehat{ABC}+\widehat{ADC}=180^o\)mà hai góc ABC và ADC là 2 góc ở vị trí đối nhau
=> Tứ giác ABCD là tứ giác nội tiếp
- Gọi O là tâm của đường tròn ngoại tiếp tứ giác ABCD , khi đó OA = OB = OC = OD ( cùng bán kính của đường tròn ( O ))
+) Vì OA = OB nên O thuộc đường trung trực của đoạn thằng AB
+) Vì OA = OC nên O thuộc đường trung trực của đoạn thẳng AC
+) VÌ OD = OB nên O thuộc đường trung trực của đoạn thằng BD
Do đó các đường trung trực của AB , BD cùng đi qua tâm O của đường tròn ngoại tiếp tứ giác ABCD
Tứ giác ABCD có
⇒ ABCD là tứ giác nội tiếp
Gọi O là tâm đường tròn ngoại tiếp tứ giác ABCD
⇒ OA = OB = OC = OD = R
Do OA= OC nên ΔOAC cân tại O, đường trung tuyến kẻ từ O cũng chính là đường cao của tam giác. Suy ra, O thuộc đường trung trực của AC.
Do OB= OD nên ΔOBD cân tại O, đường trung tuyến kẻ từ O cũng chính là đường cao của tam giác. Suy ra, O thuộc đường trung trực của BD
Do OA= OB nên ΔOAB cân tại O, đường trung tuyến kẻ từ O cũng chính là đường cao của tam giác. Suy ra, O thuộc đường trung trực của AB.
⇒ O thuộc đường trung trực của AC, BD, AB .
Vậy các đường trung trực của AC, BD, AB cùng đi qua O.
Kiến thức áp dụng
+ Nếu một tứ giác có tổng số đo hai góc đối nhau bằng 180º thì tứ giác đó nội tiếp một đường tròn.
Nhận xét: Tứ giác ABCD nội tiếp đường tròn đường kính AC vì ^ABC=^CDA=900. Gọi tâm của đường tròn này là O. Khi đó thì O chính là trung điểm đoạn AC. Ta thấy M là 1 điểm chung của (S) và (T), đồng thời là trung điểm BD nên M nằm trên trung trực BD. Gọi giao điểm thứ hai của (S) và (T) là L. Ta đi chứng minh L cũng nằm trên trung trực BD. Thật vậy:
Từ M kẻ MK vuông góc với đường thẳng ST. Gọi E,F lần lượt là hình chiếu của S,T lên MA,MC.
Khi đó các tứ giác KSEM, KTMS nội tiếp => ^EKF = ^MKE + ^MKF = ^MSE + ^MTF = (^ASM + ^CTM)/2
Ta thấy AC là tiếp tuyến chung của (S) và (T) nên ^MAC = ^ASM/2; ^MCA = ^CTM/2
Từ đó: ^EKF = ^MCA + ^MAC = ^EOA + ^FOC (Chú ý tứ giác MEOF là hbh) = 1800 - ^EOF
Suy ra tứ giác KEOF nội tiếp => ^EKO = ^EFO = ^MAC = ^MSE (=^ASM/2) = ^EKM
Mà M và O nằm cùng phía so với EK nên tia KM,KO trùng nhau hay O,M,K thẳng hàng
Mặt khác: (S) và (T) cắt nhau tại M và L nên ML vuông góc ST. Do MK vuông góc ST nên M,K,L thẳng hàng
Vì vậy 4 điểm O,M,K,L thẳng hàng. Lại có OM là trung trực của BD => ML cũng là trung trực BD
Hay 2 giao điểm của (S) và (T) cùng nằm trên đường trung trực của BD (đpcm).
Cho hình thang cân ABCD (BC//AD), hai đường chéo AC, BD cắt nhau tại điểm O sao cho \widehat{BOC} = 60 độ. Gọi M,N,P,Q lần lượt là trung điểm của các đoạn thẳng BC,OA,AB,CD.a) Chứng minh tứ giác DMNC nội tiếp đượcb) Chứng minh tam giác MNQ là tam giác đềuc) So sánh các góc \widehat{MQP}, \widehat{QND}, \widehat{NMC} d) Chứng minh trực tâm của tam giác MNQ thẳng hàng với O, I
Gọi P và Q lần lượt là trung điểm của AC' và CA'.
CC' giao MN tại I
Xét tam giác AC'C. P là trung điểm AC', M là trung điểm của AC
=> PM là đường trung bình tam giác AC'C => PM//CC'
hay C'I//PM
C' là trọng tâm tam giác ABD => C'N=AN/3.(T/c trọng tâm)
Mà P là trung điểm AC' => C' là trung điểm PN.
Xét tam giác PNM: C' là trung điểm PN, C'I//PM => I là trung điểm của MN
=> CC' đi qua trung điểm của MN (1)
Tương tự ta chứng minh được AA' đi qua trung điểm MN (2)
Tương tự xét trong tam giác DMB: BB' và DD' cùng đi qua trung điểm I của MN (3)
Từ (1),(2) và (3) => AA';BB';CC';DD',MN đồng quy (đpcm).
Bạn dựa theo dạng này
Vậy B nằm trên đường trung trực của đoạn thẳngAC (1)
Tương tự ta có AD=CD (gt)
Vậy D nằm trên đường trung trực của AC (2)
Từ (1) và (2) ta suy ra BD là đường trung trực của AC (đpcm)
b,ΔABD=ΔCBD(c.c.c)⇒ˆBAD=ˆBCDΔABD=ΔCBD(c.c.c)⇒BAD^=BCD^
Ta lại có :
ˆBAD+ˆBCD=3600−ˆB−ˆDBAD^+BCD^=3600−B^−D^
=3600−1000−700=1900=3600−1000−700=1900
do đó :ˆA=ˆC=1900:2=950
a) Xét (O) có
ΔAEC nội tiếp đường tròn(A,E,C cùng thuộc (O))
AC là đường kính của (O)(gt)
Do đó: ΔAEC vuông tại E(Định lí)
\(\Rightarrow\)AE\(\perp\)EC tại E
\(\Rightarrow\)AE\(\perp\)BE tại E
hay \(\widehat{AEB}=90^0\)
Xét ΔAEB có \(\widehat{AEB}=90^0\)(cmt)
nên ΔAEB vuông tại E(Định nghĩa tam giác vuông)
Xét ΔAEB vuông tại E có \(\widehat{ABE}=45^0\)(gt)
nên ΔAEB vuông cân tại E(Định lí tam giác vuông cân)
\(\Rightarrow\)AE=EB(hai cạnh bên của ΔAEB vuông cân tại E)
b)
Ta có: EA\(\perp\)EB(cmt)
nên \(EA\perp EH\) tại E
Xét ΔEHB có \(EA\perp EH\) tại E(cmt)
nên ΔEHB vuông tại E(Định nghĩa tam giác vuông)
Ta có: ΔEHB vuông tại E(cmt)
mà EI là đường trung tuyến ứng với cạnh huyền BH(I là trung điểm của BH)
nên \(EI=\dfrac{BH}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)
mà \(IH=BI=\dfrac{BH}{2}\)(I là trung điểm của BH)
nên EI=IH=IB
Ta có: IH=IE(cmt)
nên I nằm trên đường trung trực của HE(Tính chất đường trung trực của một đoạn thẳng)
hay đường trung trực của HE đi qua trung điểm I của BH(đpcm)
c) Ta có: \(AE\perp EC\) tại E(cmt)
nên \(AE\perp BC\) tại E
Xét (O) có
ΔADC nội tiếp đường tròn(A,D,C cùng thuộc đường tròn(O))
AC là đường kính của (O)(gt)
Do đó: ΔADC vuông tại D(Định lí)
\(\Rightarrow CD\perp AD\) tại D
hay \(CD\perp BA\) tại D
Xét ΔBAC có
AE là đường cao ứng với cạnh BC(cmt)
CD là đường cao ứng với cạnh BA(cmt)
AE cắt CD tại H(gt)
Do đó: H là trực tâm của ΔABC(Tính chất ba đường cao của tam giác)
\(\Rightarrow\)BH là đường cao ứng với cạnh AC
hay \(BH\perp AC\)(đpcm)
bạn ơi phần "Do đó: ΔAEC vuông tại E(Định lí)" ở câu a là định lí nào vậy?
Tứ giác ABCD có tổng hai góc đối diện bằng 180o nên nội tiếp đường tròn tâm O, ta có
OA = OB = OC = OD
Do đó các đường trung trực của AB, BD, AB cùng đi qua O
Tứ giác ABCD có tổng hai góc đối diện bằng 180o nên nội tiếp đường tròn tâm O, ta có
OA = OB = OC = OD
Do đó các đường trung trực của AB, BD, AB cùng đi qua O