Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do ABCD là tứ giác => \(\widehat{A}+\widehat{B}+\widebat{C}+\widehat{D}=\)360 độ (1)
Mà \(\widehat{D}=\frac{1}{2}\widehat{A};\frac{1}{2}\widehat{A}=\frac{1}{4}\widehat{B}=>\widehat{B}=2\widehat{A}\)
; \(\frac{1}{2}\widehat{A}=\frac{1}{5}\widehat{C}=>\widehat{C}=\frac{5}{2}\widehat{A}\)
Thay B = 2A; C = 5/2 A ; D = 1/2 A vào 1., có
\(\widehat{A}+2\widehat{A}+\frac{5}{2}\widehat{A}+\frac{1}{2}\widehat{A}=360\)
6A = 360
A = 60
Vậy B = 2 A => B = 2.60 = 120
C = 5/2 A => C = 5/2 . 60 = 150
D = 1/2 A => D = 1/2 . 60 = 30
Giả sử AC // BD => \(\widehat{A}+\widehat{B}=60+120=180\)
và \(\widehat{C}+\widehat{D}=150+60=180\)
( kề bù)
=> ABCD là hình thang( đáy AC//BD )
Mik làm theo cảm tính, ko bik đúng hay sai đâu nha
a. Ta có: AD = AB
=> \(\Delta ABD\) là tam giác cân
=> Góc ADB = góc ABD (1)
Mà góc ABD = góc BDC (so le trong) (2)
Từ (1) và (2), suy ra:
BD là tia phân giác của góc ADC
b. Nối AC
Xét 2 tam giác ABC và ABD có:
AD = BC (gt)
AB chung
=> \(\Delta ABD\sim\Delta ABC\) (1)
Ta có: AD = AB = BC (2)
Từ (1) và (2), suy ra: \(\Delta ABD=\Delta ABC\)
=> Góc A = góc B
Ta có: AB//CD
=> Góc D + góc A = 90o (2 góc trong cùng phía)
Mà góc A = góc B
=> Góc C = góc D
=> ABCD là hình thang cân
cho tứ giác abcd có ad=ab=bc và gốc Á+góc C=180.CMR a)tia DB là tia phân giác của góc ADC.b) Tứ giác ABCD là hình thang cân
a, Xet tu giac ABCD co \(\widehat{BAC}+\widehat{BCD}=180° \)→Tu giac ABCD la tu giac noi tiep\(→\hept{\begin{cases}\widehat{CAB}=\widehat{BDC}\\\widehat{ADB}=\widehat{ACB}\end{cases}}\)
Mat khac do AB=BC nen tam giac ABC can suy ra \(\widehat{CAB}=\widehat{ACB}\)
Tu day ta co \(\widehat{BCD}=\widehat{ADB}\)hay DB la phan giac cua \(\widehat{ADC}\)
Hình tứ giác ABCD có 2 cạnh đáy là : Ab Và CD
Mà : \(\widehat{A}=\widehat{B};\widehat{C}=\widehat{D}\)
Nên Hình tứ giác alf hình thang cân
Xét\(\Delta ABC\) và \(\Delta ABD\)có :
BC = AD
BAD = ABC (gt)
AB chung
=> \(\Delta ABC=\Delta ABD\)(c.g.c)
=> AC = BD
=> ABD = BAC
=> \(\Delta AOB\) cân tại O
=> AO = OB
Mà AO + OC = AC
BO + OD = BD
AC = BD
=> \(\Delta ODC\) cân tại O
=> ODC = OCD
Xét \(\Delta\)OAB có :
OBA = \(\frac{180-AOB}{2}\)
Xét \(\Delta ODC\)có
ODC =\(\frac{180-DOC}{2}\)
Mà AOB = DOC ( đối đỉnh )
=> OBA = ODC
Mà 2 góc này ở vị trí so le trong
=> AB//CD
Mà AC = BD (cmt)
=> ABCD là hình thang cân
tứ giác ABCD có: \(\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}=360^o\)
Hay \(2\widehat{A}+2\widehat{D}=360^o\)
\(\Rightarrow2\left(\widehat{A}+\widehat{D}\right)=360^o\)
\(\Rightarrow\widehat{A}+\widehat{D}=180^o\)
\(\Rightarrow AB//CD\)
Vậy tứ giác ABCD là hình thang. Hình thang này có 2 góc kề 1 đáy bằng nhau nên là hình thang cân.