K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 9 2020

tứ giác ABCD có: \(\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}=360^o\)

Hay \(2\widehat{A}+2\widehat{D}=360^o\)

        \(\Rightarrow2\left(\widehat{A}+\widehat{D}\right)=360^o\)

\(\Rightarrow\widehat{A}+\widehat{D}=180^o\)

\(\Rightarrow AB//CD\)

Vậy tứ giác ABCD là hình thang. Hình thang này có 2 góc kề 1 đáy bằng nhau nên là hình thang cân.

12 tháng 8 2017

Do ABCD là tứ giác => \(\widehat{A}+\widehat{B}+\widebat{C}+\widehat{D}=\)360 độ (1)

Mà \(\widehat{D}=\frac{1}{2}\widehat{A};\frac{1}{2}\widehat{A}=\frac{1}{4}\widehat{B}=>\widehat{B}=2\widehat{A}\)

\(\frac{1}{2}\widehat{A}=\frac{1}{5}\widehat{C}=>\widehat{C}=\frac{5}{2}\widehat{A}\)

Thay B = 2A; C = 5/2 A ; D = 1/2 A vào 1., có

\(\widehat{A}+2\widehat{A}+\frac{5}{2}\widehat{A}+\frac{1}{2}\widehat{A}=360\)

6A = 360

A = 60

Vậy B = 2 A => B = 2.60 = 120

C = 5/2 A => C = 5/2 . 60 = 150

D = 1/2 A => D = 1/2 . 60 = 30

Giả sử AC // BD => \(\widehat{A}+\widehat{B}=60+120=180\)

và \(\widehat{C}+\widehat{D}=150+60=180\)

( kề bù) 

=> ABCD là hình thang( đáy AC//BD )

Mik làm theo cảm tính, ko bik đúng hay sai đâu nha

12 tháng 8 2017

nhầm ko phải kề bù mà là trong cùng phía bù nhau

30 tháng 8 2021

Hình vẽ minh hoạ undefined

30 tháng 8 2021

a. Ta có: AD = AB 

=> \(\Delta ABD\) là tam giác cân

=> Góc ADB = góc ABD (1)

Mà góc ABD = góc BDC (so le trong) (2)

Từ (1) và (2), suy ra:

BD là tia phân giác của góc ADC

b. Nối AC

Xét 2 tam giác ABC và ABD có:

AD = BC (gt)

AB chung

=> \(\Delta ABD\sim\Delta ABC\) (1)

Ta có: AD = AB = BC (2)

Từ (1) và (2), suy ra: \(\Delta ABD=\Delta ABC\)

=> Góc A = góc B

Ta có: AB//CD

=> Góc D + góc A = 90o (2 góc trong cùng phía)

Mà góc A = góc B

=> Góc C = góc D

=> ABCD là hình thang cân

18 tháng 8 2018

cho tứ giác abcd có ad=ab=bc và gốc Á+góc C=180.CMR a)tia DB là tia phân giác của góc ADC.b) Tứ giác ABCD là hình thang cân

19 tháng 9 2020

a,   Xet tu giac ABCD co \(\widehat{BAC}+\widehat{BCD}=180° \)→Tu giac ABCD la tu giac noi tiep\(→\hept{\begin{cases}\widehat{CAB}=\widehat{BDC}\\\widehat{ADB}=\widehat{ACB}\end{cases}}\)

Mat khac do AB=BC nen tam giac ABC can suy ra    \(\widehat{CAB}=\widehat{ACB}\)

  Tu day ta co  \(\widehat{BCD}=\widehat{ADB}\)hay DB la phan giac cua    \(\widehat{ADC}\)

2 tháng 8 2017

Hình tứ giác ABCD có 2 cạnh đáy là : Ab Và CD

Mà : \(\widehat{A}=\widehat{B};\widehat{C}=\widehat{D}\)

Nên Hình tứ giác alf hình thang cân 

Xét\(\Delta ABC\) và \(\Delta ABD\)có :

BC = AD 

BAD = ABC (gt)

AB chung

=> \(\Delta ABC=\Delta ABD\)(c.g.c)

=> AC = BD 

=> ABD = BAC 

=> \(\Delta AOB\) cân tại O 

=> AO = OB 

Mà AO + OC = AC

BO + OD = BD

AC = BD

=> \(\Delta ODC\) cân tại O

=> ODC = OCD 

Xét \(\Delta\)OAB có :

OBA = \(\frac{180-AOB}{2}\)

Xét \(\Delta ODC\)có 

ODC =\(\frac{180-DOC}{2}\)

Mà AOB = DOC ( đối đỉnh )

=> OBA = ODC

Mà 2 góc này ở vị trí so le trong 

=> AB//CD

Mà AC = BD (cmt)

=> ABCD là hình thang cân