K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 7 2018

mk lớp 6 nên ko bt

a: Xét ΔABD có M,Q lần lượt là trung điểm của AB,AD

=>MQ là đường trung bình

=>MQ//BD và MQ=BD/2

Xét ΔCBD có

P,N lần lượt là trung điểm của CD,CB 

=>PN là đường trung bình

=>PN//BD và PN=BD/2

=>MQ//PN và MQ=PN

Xét tứ giác MNPQ có

MQ//PN

MQ=PN

=>MNPQ là hình bình hành

Xét ΔCAB có

I,N lần lượt là trung điểm của CA,CB

=>IN là đường trung bình

=>IN//AB và IN=AB/2

Xét ΔDAB có K,Q lần lượt là trung điểm của DB,DA

=>KQ là đường trung bình

=>KQ//AB và KQ=AB/2

=>IN//KQ và IN=KQ

=>INKQ là hình bình hành

b: MNPQ là hình bình hành

=>MP cắt NQ tại trung điểm của mỗi đường(1)

INKQ là hình bình hành

=>IK cắt NQ tại trung điểm của mỗi đường(2)

Từ (1), (2) suy ra MP,NQ,IK đồng quy

22 tháng 8 2021

1) Xét tam giác ABC có:

M là trung điểm của AB( gt)

N là trung điểm của BC( gt)

=> MN là đường trung bình của tam giác ABC

=> \(MN=\dfrac{1}{2}AC\left(1\right)\)

Xét tam giác ADC có:

Q là trung điểm của AD( gt)

P là trung điểm của DC( gt)

=> PQ là đường trung bình của tam giác ADC

=> \(PQ=\dfrac{1}{2}AC\left(2\right)\)

Từ \(\left(1\right),\left(2\right)\Rightarrow MN=PQ\)

b) Xét tam giác ABD có:

M là trung điểm của AB (gt)

F là trung điểm của BD(gt)

=> MF là đường trung bình của tam giác ABD

=> MF//AD và \(MF=\dfrac{1}{2}AD\) (3)

CMTT => EP là đường trung bình của tam giác ADC

=> EP//AD và \(EP=\dfrac{1}{2}AD\left(4\right)\)

Từ (3),(4) => Tứ giác MEPF là hình bình hành

 

22 tháng 8 2021

c) Ta có: MN là đường trung bình của tam giác ABC(cmt)

\(\Rightarrow\left\{{}\begin{matrix}MN=\dfrac{1}{2}AC\\MN//AC\end{matrix}\right.\)(5)

Ta có: PQ là đường trung bình của tam giác ABC(cmt)

\(\Rightarrow\left\{{}\begin{matrix}PQ=\dfrac{1}{2}AC\\PQ//AC\end{matrix}\right.\)(6)

Từ (5),(6) => Tứ giác MNPQ là hình bình hành

=> MP cắt PQ tại trung điểm của MP(t/c)

Mà EF cắt MP tại trung điểm MP( tứ giác MEPF là hình bình hành)

=> MP,NQ,EF đồng quy

26 tháng 9 2019

Tương tự bài 3A

15 tháng 10 2021

a: Xét ΔABC có

M là trung điểm của AB

N là trung điểm của BC

Do đó: MN là đường trung bình của ΔABC

Suy ra: MN//AC và \(MN=\dfrac{AC}{2}\)(1)

Xét ΔCDA có 

P là trung điểm của CD

Q là trung điểm của DA

Do đó: PQ là đường trung bình của ΔCDA

Suy ra: PQ//AC và \(PQ=\dfrac{AC}{2}\left(2\right)\)

Từ (1) và (2)suy ra MN//PQ và MN=PQ

hay MNPQ là hình bình hành

24 tháng 8 2022

a) QQ là trung điểm của ADAD

MM là trung điểm của ABAB

⇒QM⇒QM là đường trung bình của ΔABDΔABD

⇒QM∥=12BD⇒QM∥=12BD (1)

Tương tự PNPN là đường trung bình của ΔBCDΔBCD

⇒PN∥=12BD⇒PN∥=12BD (2)

Từ (1) và (2) suy ra QM∥=PN(∥=12BD)QM∥=PN(∥=12BD)

⇒⇒ tứ giác MNPQMNPQ là hình bình hành.

 

Ta có: QQ là trung điểm của ADAD

JJ là trung điểm của ACAC

⇒QJ⇒QJ là đường trung bình của ΔACDΔACD

⇒QJ∥=12CD⇒QJ∥=12CD (1)

Tương tự KNKN là đường trung bình của ΔBCDΔBCD

⇒KN∥=12CD⇒KN∥=12CD (2)

Từ (1) và (2) suy ra QJ∥=KN(∥=12CD)QJ∥=KN(∥=12CD)

⇒⇒ tứ giác JNKQJNKQ là hình bình hành.

 

b) Tứ giác MNPQMNPQ là hình bình hành

⇒ Gọi MP∩QN=O⇒ Gọi MP∩QN=O

⇒O⇒O là trung điểm của MPMP và QNQN

Tứ giác INKQINKQ là hình bình hành

Có hai đường chéo là QNQN và KJKJ

OO là trung điểm của QNQN

⇒O⇒O là trung điểm của KJKJ

⇒MP,NQ,JK⇒MP,NQ,JK đồng quy tại OO trung điểm của mỗi đường.