Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Kẻ đường chéo AC của tứ giác ABCD. Mình xin phép không vẽ hình nhé.
Vì các tam giác ABC, ADC lần lượt là các tam giác vuông tại B và D nên theo định lí Pi-ta-go ta có thể dễ dàng suy ra:
- \(AB^2+BC^2=AC^2\)
- \(AD^2+DC^2=AC^2\)
Từ đây, vì \(AB<AD \Rightarrow AB^2<AD^2 \Rightarrow AC^2-AB^2>AC^2-AD^2 \Rightarrow BC^2>CD^2 \iff BC>CD (đpcm)\)
Câu hỏi của headsot96 - Toán lớp 8 - Học toán với OnlineMath
Em tham khảo!
a: Xét tứ giác ABCD có
\(\widehat{B}+\widehat{D}=180^0\)
nên ABCD là tứ giác nội tiếp
a, xét (O) có gBAD nội tiếp đường tròn
=>gBAD=90độ=> EA vuông góc FD
gBCD nội tiếp đường tròn
=>gBCD=90độ => FC vuông góc DE
xét tgDEF có EA là đường cao
FC là đương cao
EA cắt FC tại B
=> B là trực tâm của tg
=>DB là đường cao
=> DB vuông góc EF
b,xét tgABF và tgCBE có gBAF=gBCE = 90độ
gABF=gCBE (hai góc đối đỉnh)
=> tgABF ~ tgCBE (g.g)
=> BA/BC= BF/BE
=>BA.BE=BC.BF
c, bn xem lại giùm mk điểm H là điểm nào
Ví dụ nhaa , thế này C ở đâu
B D A C???
Xem lại đề