Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: ˆA+ˆB+ˆC+ˆD=360oA^+B^+C^+D^=360o
⇒ˆA+120độ+60độ+90độ=360độ⇒A^+120độ+60độ+90độ=360độ
⇒ˆA=360độ−90độ−60độ−120độ=90 độ
Ta có :
\(\widehat{BCD}+120^o=180^o\)( kề bù )
\(\widehat{BCD}=180^o-120^o\)
\(\widehat{BCD}=60^o\)
Tứ giác ABCD có :
\(\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}=360^o\)
\(130^o+90^o+60^o+\widehat{D}=360^o\)
\(280^o+\widehat{D}=360^o\)
\(\widehat{D}=360^o-280^o\)
\(\widehat{D}=80^o\)
a) Ta thấy : A + B + C + D = 360°
Tự áp dụng tính chất dãy tỉ số bằng nhau ta có :
A = 144°
B = 108°
C = 72°
D = 36°
b) Vì DE , CE là phân giác ADC và ACD
=> EDC = ADE = 18°
=> BCE = ECD = 36°
Xét ∆DEC ta có :
EDC + DEC + ECD = 180°
=> DEC = 126°
Ta có : góc ngoài tại đỉnh C
=> 180° - BCD = 108°
Góc ngoài tại đỉnh D
=> 180° - ADC = 144°
Mà DF , CF là phân giác ngoài góc C , D
=> CDF = 72°
=> DCF = 54°
Xét ∆CDF ta có :
CDF + DFC + DCF = 180°
=> DFC = 44°
Vẽ hình, gọi A1 là góc trong còn A2 là góc ngoài tại A
Ta có: \(\widehat{A_1}+\widehat{B}+\widehat{C}+\widehat{D}=360^0\) (Tổng 4 góc của tứ giác)
\(\Rightarrow\widehat{A}_1+120^0+60^0+90^0=360^0\)
\(\Rightarrow\widehat{A_1}=360^0-120^0-60^0-90^0=90^0\)
Ta có: \(\widehat{A_1}+\widehat{A_2}=180^0\) (kề bù)
\(\Rightarrow90^0+\widehat{A_2}=180^0\Rightarrow\widehat{A_2}=90^0\)
Vậy ....
trong tứ giác ABCD có: góc A+ góc B+ góc C+ góc D=360 độ
thay số: góc A+ 120 độ + 60 độ+ 90 độ= 360 độ
suy ra: góc A= 360 độ -120 độ -60 độ- 90 độ=90 độ
góc ngoài tại A= 180 độ - góc A
thay số: góc ngoài tại A=180 độ-90 độ=90 độ
Vậy góc A=90 độ, góc ngoài của A=90 độ
tổng 2 góc d và c là
360-90-60=210 a, nếu c-d=20 thì
C= ( 210+20) : 2= 115o
D= 210-115=95o
b, nếu C= 3/4 D thì
C= 3/4+3 ( C+D)
C= 3/7 210=90o
D= 90: 3/4=120o