K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 11 2021

Tham khảo

nối đường chéo AC
Trong ∆ABC ta có
E là trung điểm của AB
F là trung điểm của BC
Nên EF là đường trung bình của ∆ABC
EF//=1/2AC(1)
(Sd tính chất của đng trung bình)
Chứng minh tương tự với ∆ADC
=> HG//=1/2AC(2)
Từ (1) và(2) suy ra EF//=HG
Vậy tứ giác EFGHlaf hình bình hành
Vì có một cặp đối song song và bằng nhau

26 tháng 11 2021

Sd là j z bn

 

10 tháng 5 2017

Áp dụng tính chất đường trung bình của tam giác ta chứng minh được:

E H = F G = 1 2 B D   v à   H G = E F = 1 2 A C

Mà AC = BD Þ EH = HG = GF= FE nên EFGH là hình thoi.

Sửa đề; EG=FH

Xét ΔABD có

E,H lần lượt là trung điểm của AB,AD

=>EH là đường trung bình

=>EH//BD và EH=BD/2(1)

Xét ΔCBD có

F,G lần lượt là trung điểm của CG,CD

=>FG là đường trung bình

=>FG//BD và FG=BD/2(2)

Từ (1), (2) suy ra EH//FG và EH=FG

Xét tứ giác EHGF có

EH//FG

EH=FG

=>EHGF là hình bình hành

mà EG=FH

nên EHGF là hình chữ nhật

=>EH vuông góc HG

mà EH//BD

nên BD vuông góc HG

mà HG//AC

nên AC vuông góc BD

3 tháng 9 2017

Tự vẽ hình :)

t/g ABC có :

AE = EB

BF = FC

\(\Rightarrow\)EF - đường trung bình của tam giác ABC

\(\Rightarrow\)\(EF\)//   \(AC\)\(,\)\(EF=\frac{AC}{2}\left(1\right)\)

t/g ADC có :

AH = HD

CG = GD

\(\Rightarrow\)HG - đường trung bình của tam giác ADC

\(\Rightarrow\)\(HG\)//   \(AC\)\(,\)\(HG=\frac{AC}{2}\)\(\left(2\right)\)

Từ ( 1 ) và ( 2 ) \(\Leftrightarrow\)EF // HG , EF = HG

Vì tứ giác EFGH có 2 cạnh đối song song và bằng nhau

\(\Rightarrow\)EFGH - hình bình hành ( đpcm )

3 tháng 9 2017

xem lại đề bài nhé bạn :)

a: Xét ΔABC có

E là trung điểm của BC

F là trung điểm của CA
Do đó: EFlà đường trung bình

=>EF//AB và EF=AB/2(1)

Xét ΔABD có

H là trung điểm của DB

G la trung điểm của AD

Do đó: HG là đường trung bình

=>HG//AB và HG=AB/2(2)

Từ (1) và (2) suy ra HG//FE và HG=FE

b: HE=DC/2

EF=AB/2

mà AB=DC

nên HE=FE

Xét tứ giác EFGH có 

EF//GH

EF=GH

Do đó: EFGH là hình bình hành

mà EH=EF

nên EFGH là hình thoi

24 tháng 8 2019

Để học tốt Toán 8 | Giải toán lớp 8

+ E là trung điểm AB, F là trung điểm BC

⇒ EF là đường trung bình của tam giác ABC

⇒ EF // AC và EF = AC/2

+ H là trung điểm AD, G là trung điểm CD

⇒ HG là đường trung bình của tam giác ACD

⇒ HG // AC và HG = AC/2.

+ Ta có:

EF //AC, HG//AC ⇒ EF // HG.

EF = AC/2; HG = AC/2 ⇒ EF = HG

⇒ tứ giác EFGH là hình bình hành.

11 tháng 5 2017

 

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Nối đường chéo AC.

Trong ∆ ABC ta có:

E là trung điểm của AB (gt)

F là trung điểm của BC (gt)

Nên EF là đường trung bình của  ∆ ABC

⇒EF//AC và EF = 1/2 AC

(tính chất đường trung hình tam giác) (1)

Trong  ∆ ADC ta có:

H là trung điểm của AD (gt)

G là trung điểm của DC (gt)

Nên HG là đường trung bình của ADC

⇒ HG // AC và HG = 1/2 AC (tính chất đường trung bình tam giác) (2)

Từ (1) và (2) suy ra: EF // HG và EF = HG

Vậy tứ giác EFGH là hình bình hành (vì có một cặp cạnh đối song song và bằng nhau).