Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tứ giác AEDF có
FD//AE(gt)
ED//AF(gt)
Do đó: AEDF là hình bình hành(Dấu hiệu nhận biết hình bình hành)
Hình bình hành AEDF có AD là tia phân giác của \(\widehat{FAE}\)(gt)
nên AEDF là hình thoi(Dấu hiệu nhận biết hình thoi)
1.
\(A+B+C=180^0\Rightarrow A=180^0-\left(B+C\right)=70^0\)
Kẻ đường cao BD
Trong tam giác vuông ABD:
\(cotA=\dfrac{AD}{BD}\Rightarrow AD=BD.cotA\)
Trong tam giác vuông BCD:
\(cotC=\dfrac{CD}{BD}\Rightarrow CD=BD.cotC\)
\(\Rightarrow AD+CD=BD.cotA+BD.cotC\)
\(\Rightarrow AC=BD.\left(cotA+cotC\right)\)
\(\Rightarrow BD=\dfrac{AC}{cotA+cotC}\)
\(\Rightarrow S_{ABC}=\dfrac{1}{2}BD.AC=\dfrac{1}{2}.\dfrac{AC^2}{cotA+cotC}=\dfrac{35^2}{2\left(cot70^0+cot50^0\right)}\approx509,1\left(cm^2\right)\)
Kẻ \(MI\text{//}AC;DH\bot MN\left(H\in MN\right);IK\bot MN\left(K\in MN\right)\)
\(DHKI\) là hcn \(\Rightarrow DH=IK\Rightarrow S_{DMN}=S_{IMN}\)
Ta có \(\left\{{}\begin{matrix}\Delta AMN\sim\Delta ABC\\\Delta BMI\sim\Delta ABC\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\dfrac{S_{AMN}}{S_{ABC}}=\left(\dfrac{AM}{AB}\right)^2\\\dfrac{S_{BMI}}{S_{ABC}}=\left(\dfrac{BM}{AB}\right)^2\end{matrix}\right.\)
\(\Rightarrow\dfrac{S_{AMN}+S_{BMI}}{S_{AB}}=\dfrac{AM^2+BM^2}{AB^2}\ge\dfrac{\dfrac{1}{2}\left(AM+MB\right)^2}{AB^2}\)
\(\Rightarrow\dfrac{S_{ABC}-S_{MNCI}}{S_{ABC}}\ge\dfrac{1}{2}\\ \Rightarrow1-\dfrac{S_{MNCI}}{S_{ABC}}\ge\dfrac{1}{2}\Rightarrow\dfrac{S_{MNCI}}{S_{ABC}}\le\dfrac{1}{2}\\ \Rightarrow S_{MNCI}\le\dfrac{1}{2}S_{ABC}\\ \Rightarrow2\cdot S_{DMN}\le\dfrac{1}{2}S_{ABC}\\ \Rightarrow S_{DMN}\le\dfrac{1}{4}S_{ABC}\)
Dấu \("="\Leftrightarrow AM=MB\Leftrightarrow M\) là trung điểm \(AB\Leftrightarrow N\) là trung điểm AC
Khi đó d đi qua trung điểm AB và AC
[ACD] = [ABCD] - [ABC] = 35,3554 cm2
kẻ BH _|_ AC ; DK_|_ AC cắt MN tại P
=> \(k=\frac{DP}{DK}=\frac{DP}{DK}-1+1=\frac{PK}{DK}+1=\frac{BH}{DK}+1=\frac{\left[ABC\right]}{\left[ACD\right]}+1=1,4399978504\)
[DMN]=k2 .[ADC] = .....tự tính nhé