Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
ta có tam giác BCD cân tại C
=>góc CDB bằng góc CBD
=>BC//AD(goc ADB = gocCBD)
=>DPCM ABCD là hình thang
Học tốt
\(DB\)là phân giác \(\widehat{ADC}\)suy ra \(\widehat{ADB}=\widehat{CDB}\)(1)
\(BC=CD\)suy ra \(\Delta CBD\)cân tại \(C\)suy ra \(\widehat{CBD}=\widehat{CDB}\)(2)
(1)(2) suy ra \(\widehat{ADB}=\widehat{CBD}\)
mà hai góc này ở vị trí so le trong suy ra \(BC//AD\).
Suy ra \(ABCD\)là hình thang.
![](https://rs.olm.vn/images/avt/0.png?1311)
Xét ▲ADC và ▲BCD có:
AD = BC ( gt )
AC = BD ( gt )
DC chung
=> ▲ADC = ▲BCD ( c.c.c )
=> góc D = góc C ( c.t.ứ )
cmtt ta đc góc A = Góc B
Mà Góc D + góc A + Góc C + Góc B=360o
=> 2GócA+2GócD=360o
-> gócA+gócD=180o ( 2 góc trong cùng phía )=>AB//DC -> ABCD là hình thang
Vì góc D = góc C (cmt) nên ABCD là hình thang cân
![](https://rs.olm.vn/images/avt/0.png?1311)
Vì BD là phân giác của ∠ABC
Suy ra ∠ABD = ∠CBD (1)
Lại có BC = CD (gt)
Suy ra ΔCBD cân tại C
Nên ∠CBD = ∠CDB (2)
Từ (1) và (2) suy ra:
∠ABD = ∠CDB Mà 2 góc này ở vị trí so le trong
Suy ra AB // CD
Vậy ABCD là hình thang.
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Vì BC=CD(gt)
=> ΔBDC cân tại C
=>\(\widehat{CBD}=\widehat{CDB}\)
b)Vì BD là tia phân giác của \(\widehat{CBA}\)
=>\(\widehat{ABD}=\widehat{CBD}\)
Mà \(\widehat{CBD}=\widehat{CDB}\left(cmt\right)\)
=>\(\widehat{ABD}=\widehat{CDB}\) . Mà hai góc này ở vị trí soletrong
=>AB//DC
=>ABCD là hình thang