Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
kẻ đường cao BH
xét tứ giác ABHD có góc A=góc D=góc H=90 độ
=> ABHD là hình chữ nhật
=> S ABHD=AB.AD=4.3=12 cm vuông
xét tam giác vuông BHC có tanC=BH/HC =>HC=BH/tanC=3/tan\(40^0\)=3.6 cm
=> S BHC=1/2.BH. HC=1/2.3.3,6=5,4 cm vuông
=> S ABCD= S ABHC+S BHC=12+5,4=17,4 cm vuông
a: Xét ΔABM vuông tại A và ΔDMC có
BA/DM=AM/CD
nên ΔABM đồng dạng với ΔDMC
b: Ta có: ΔABM đồng dạng với ΔDMC
nên góc AMB=góc DCM
=>góc AMB+góc DMC=góc DCM+góc DMC=90 độ
=>góc BMC=90 độ
=>ΔBMC vuông tại M
c: \(S=MB\cdot\dfrac{MC}{2}=10\cdot\dfrac{20}{2}=100\left(cm^2\right)\)
kẻ đường cao BH
xét tứ giác ABHD có góc A=góc D=góc H=90 độ
=> ABHD là hình chữ nhật
=> S ABHD=AB.AD=4.3=12 cm vuông
xét tam giác vuông BHC có tanC=BH/HC =>HC=BH/tanC=3/tan400=3.6 cm
=> S BHC=1/2.BH. HC=1/2.3.3,6=5,4 cm vuông
=> S ABCD= S ABHC+S BHC=12+5,4=17,4 cm vuông
Tứ giác ABCD có góc A= góc D = 90 độ nên ABCD là hình thang vuông. Từ B kẻ BH vuông góc với CD. Ta có BH= AD =3 cm.
Xét tam giác vuông BHC có góc C=40 độ nên tan 40 = BH/HC . suy ra HC = BH/tan40 = 3/ tan 40
Ta lại có AB= DH =4 cm nên CD = DH+HC 4+ 3/ tan 40
Vậy diện tích tứ giác ABCD = (AB+CD).BH/2
Kẻ BH ⊥ DC tại H. Chú ý diện tích ABCD bằng tổng diện tích của ABHD và BHC
Từ B kẻ BH⊥CD
⇒ ABHD là hình chữ nhật
⇒ \(\left\{{}\begin{matrix}HD=AB=4cm\\BH=AD=3cm\end{matrix}\right.\)
Ta được: \(HC=\dfrac{BH}{tan30^0}=\dfrac{3}{\dfrac{\sqrt{3}}{3}}=3\sqrt{3}\) ( cm )
⇒ CD = HC + HD = 4 + \(3\sqrt{3}\) cm
Khi đó:
\(S_{ABCD}=\dfrac{1}{2}\left(AB+CD\right)AD=\dfrac{1}{2}\left(4+4+3\sqrt{3}\right).3\)
⇔ \(S_{ABCD}=\dfrac{24+9\sqrt{3}}{2}\) \(\left(cm^2\right)\)
Vì A ^ = D ^ = 90 0 => AD // BC hay ABCD là hình thang vuông tại A, D
Kẻ BE ⊥ DC tại E
Tứ giác ABED có ba góc vuông A ^ = D ^ = E ^ = 90 o nên ABED là hình chữ nhật
Suy ra DE = AB = 6cm; BE = AD = 8cm
Xét tam giác BEC vuông tại E có B C E ^ = 45 0 nên tam giác BEC vuông cân tại E
EC = BE = 8cm DC = DE + EC = 6 + 8 = 14cm
Do đó:
SABCD = A B + C D . A D 2 = 6 + 14 8 2 = 80 c m 2 .
Đáp án cần chọn là: B