Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

trong tg DIC có
góc CID + góc IDC + góc ICD = 180 độ ( tống các góc của tg)
=>góc IDC + góc ICD = 180 độ - góc CID = 180 độ- 115 độ = 65 độ
góc D + góc C = 2 góc IDC +2 góc ICD = 2(góc IDC + góc ICD) = 2.65= 130 độ
xét tứ giác ABCD có
góc A + góc B + góc C + góc D =360 độ ( tổng 4 góc của tứ giác)
=> góc A + GÓC B = 360 ĐỘ - 130 độ = 230 độ
mà góc A - góc B = 50 độ
do đó ( A + B) +( A- B )= 280 ĐỘ
2A = 280 độ => A = 280/2 = 140 độ
A - B = 50 độ
=> B = 90 độ

Tứ giác \(A B C D\) có \(\hat{A} - \hat{B} = 50^{\circ}\). Các tia phân giác của \(\hat{C} , \hat{D}\) cắt nhau tại \(I\). Tính \(\hat{A} , \hat{B}\).
- Gọi \(\hat{A} = a , \textrm{ }\textrm{ } \hat{B} = b , \textrm{ }\textrm{ } \hat{C} = c , \textrm{ }\textrm{ } \hat{D} = d\).
- Ta có: \(a - b = 50^{\circ}\).
- Trong tứ giác: \(a + b + c + d = 360^{\circ}\).
- Vì \(I\) là giao điểm phân giác \(\hat{C} , \hat{D}\) nên:
\(\hat{C I D} = \frac{1}{2} \left(\right. c + d \left.\right)\). - Mà \(\hat{C I D} = 90^{\circ} \Rightarrow c + d = 180^{\circ}\).
- Thay vào: \(a + b = 180^{\circ}\).
- Giải hệ:
a+b=180∘
a−b=50∘
⇒a=115∘,b=65∘.\(\)
Đáp số: \(\hat{A} = 115^{\circ} , \textrm{ }\textrm{ } \hat{B} = 65^{\circ}\).
xin tick. cảm ơnnn

Xét tg CID có
\(\widehat{IDC}+\widehat{ICD}=180^o-\widehat{CID}=180^o-50^o=130^o\)
\(\Rightarrow\widehat{D}+\widehat{C}=2\left(\widehat{IDC}+\widehat{ICD}\right)=2.130^o=260^o\)
\(\Rightarrow\widehat{A}+\widehat{B}=360^o-\left(\widehat{C}+\widehat{D}\right)=360^o-260^o=100^o\)
\(\Rightarrow\widehat{A}=\left(100^o+20^o\right):2=60^o\Rightarrow\widehat{B}=100^o-60^o=40^o\)

Xét tam giác COD ta có :
\(\widehat{COD}+\widehat{OCD}+\widehat{ODC}=180^o\)
\(\Rightarrow\widehat{COD}=180^o-\left(\widehat{OCD}+\widehat{ODC}\right)\)
\(\Rightarrow\widehat{COD}=180^o-\frac{1}{2}\left(\widehat{ADC}+\widehat{BCD}\right)\)
\(\Rightarrow\widehat{COD}=180^o-\frac{1}{2}\left[360^o-\left(\widehat{BAD}+\widehat{ABC}\right)\right]\)
\(\Rightarrow\widehat{COD}=180^o-180^o+\frac{1}{2}\left(\widehat{A}+\widehat{B}\right)\)
\(\Rightarrow\widehat{COD}=\frac{\widehat{A}+\widehat{B}}{2}\)( đpcm )