Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C D M N L H
Do MN là đường trung bình của tam giác ABD nên MN // BD. Vậy thì \(LH\perp MN.\)
Lại có LN là đường trung bình của tam gaisc ACD nên LN // CD. Do \(MH\perp CD\Rightarrow MH\perp LN.\)
Xét tam giác LNM có LH và MH là các đường cao nên H là trực tâm tam giác LMN.
A B C H M O G N
Gọi M là trung điểm BC ; N là điểm đối xứng với H qua M.
M là trung điểm của BC và HN nên BNCH là hình bình hành
\(\Rightarrow NC//BH\)
Mà \(BH\perp AC\Rightarrow NC\perp AC\)hay AN là đường kính của đường tròn ( O )
Dễ thấy OM là đường trung bình \(\Delta AHN\) suy ra \(OM=\frac{1}{2}AH\)
M là trung điểm BC nên OM \(\perp\)BC
Xét \(\Delta AHG\)và \(\Delta OGM\)có :
\(\widehat{HAG}=\widehat{GMO}\); \(\frac{GM}{GA}=\frac{OM}{HA}=\frac{1}{2}\)
\(\Rightarrow\Delta AGH~\Delta MOG\left(c.g.c\right)\Rightarrow\widehat{AGH}=\widehat{MGO}\)hay H,G,O thẳng hàng
A B C D M N P Q E F T S
gọi E,F,T lần lượt là trung điểm của AB,CD,BD
Đường thẳng ME cắt NF tại S
Vì AC = BD \(\Rightarrow EQFP\)là hình thoi \(\Rightarrow EF\perp PQ\)( 1 )
Xét \(\Delta TPQ\)và \(\Delta SEF\)có : \(ME\perp AB,TP//AB\)
Tương tự , \(NF\perp CD;\)\(TQ//CD\)
\(\Rightarrow\Delta TPQ~\Delta SEF\)( Góc có cạnh tương ứng vuông góc )
\(\Rightarrow\frac{SE}{SF}=\frac{TP}{TQ}=\frac{AB}{CD}\)
Mặt khác : \(\Delta MAB~\Delta NCD\Rightarrow\frac{AB}{CD}=\frac{ME}{NF}\)( tỉ số đường cao = tỉ số đồng dạng )
Suy ra : \(\frac{ME}{NF}=\frac{SE}{SF}\)\(\Rightarrow EF//MN\)( 2 )
Từ ( 1 ) và ( 2 ) suy ra \(MN\perp PQ\)
a: Xét ΔABD có
M là trung điểm của AB
K là trung điểm của AD
Do đó: MK là đường trung bình của ΔBAD
Suy ra: MK//BD và \(MK=\dfrac{BD}{2}\left(1\right)\)
Xét ΔCBD có
N là trung điểm của BC
I là trung điểm của CD
Do đó: NI là đường trung bình của ΔCBD
Suy ra: NI//BD và \(NI=\dfrac{BD}{2}\left(2\right)\)
Từ (1) và (2) suy ra MK//NI và MK=NI
hay MKIN là hình bình hành
Ta có M, N lần lượt là trung điểm của AB, AD nên MN là đường trung bình của ∆ABD => MN // BD
Mà AC⊥BD nên MN⊥AC hay LA⊥MN (1)
N, L lần lượt là trung điểm của AD, AC nên NL là đường trung bình của ∆ADC => NL // DC
Mà MH⊥DC nên NL⊥MH (2)
Từ (1) và (2) suy ra H là trực tâm của tam giác MNL (đpcm)