Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tứ giác SAOB có
\(\widehat{OAS}+\widehat{OBS}=180^0\)
nên SAOB là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
b) Xét ΔSAC và ΔSDA có
\(\widehat{SAC}=\widehat{SDA}\left(=\dfrac{1}{2}sđ\stackrel\frown{AC}\right)\)
\(\widehat{ASC}\) chung
Do đó: ΔSAC\(\sim\)ΔSDA(g-g)
Suy ra: \(\dfrac{SA}{SD}=\dfrac{SC}{SA}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(SA^2=SC\cdot SD\)
a: góc SAM=góc SAB+góc BAM
góc SMA=góc SCA+góc MAC
mà góc SAB=góc SCA và góc BAM=góc CAM
nên góc SAM=góc SMA
=>SM=SA
b: góc SGO=90 độ
Vì góc SAO=góc SGO
=>SAGO nọpi tiếp
=>góc SGA=góc SOA=1/2*góc DOA=1/2*sđ cung AD
=>góc SAD=góc SGA
=>ΔSAF đồng djng với ΔSGA
=>SA/SG=SF/SA
=>SA^2=SG*SF
a: Xét ΔSCE và ΔSFC có
góc SCE=góc SFC
góc CSE chung
=>ΔSCE đồng dạng với ΔSFC
=>SC^2=SE*SF
Xét (O) có
AB,CD là dây
AB=CD
Do đó: AC//BD
Xét ΔSBD có AC//BD
nên SA/AB=SC/CD
mà AB=CD
nên SA=SC