Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Tự vẽ hình nha
c) AE là tia phân giác của góc CAB => sđcEC=sđcEB=> EC=EB=> OE vuông góc vs BC
Góc OAE= góc OEA(1)
OE song song vs AH (cùng vuông góc vs BC)=> OEA=EAH(2)
Từ (1) và (2) => góc OAE= góc EAH => AE là tia phân giác của góc OAH

a gọi I là trung điểm của A=> I thuộc đường tròn (O) vì OI-1/2.)OA=1.2.2R=R= BK
có AB,AC là tiếp tuyến của (O)
=>góc ABO=góc ACO=90 độ
=> tam giác ABO vuông tại B, có BI là đường trung tuyến
=> BI=OI=IA
có OI=OC=OB
=> tứ giác OBIC là hình thoi
=> OI là đường phân giác của góc BIC(tính chất hình thoi) hay AI là phân giác góc BAC(1)
lại có ABOC nội tiếp(O) (cmt)
=> AO vuông góc với BC hay AI vuông góc với BC(2), AB=AC(3)
từ (1)(2)(3)=> tam giác ABC đều
O A B C D E
a) Ta thấy ngay \(\widehat{BDA}=\widehat{CBA}\) (Góc nội tiếp và góc tạo bởi tiếp tuyến và dây cung cung cùng chắn một cung)
Vậy nên \(\Delta ABC\sim\Delta ADB\left(g-g\right)\)
b) Do \(\Delta ABC\sim\Delta ADB\Rightarrow\frac{AB}{AD}=\frac{AC}{AB}\Rightarrow AB^2=AD.AC\)
Xét tam giác vuông OBA có \(AB=\sqrt{AO^2-OB^2}=\sqrt{4R^2-R^2}=R\sqrt{3}\)
Vậy nên \(AD.AC=AB^2=3R^2\)
c) Ta thấy rằng \(\Delta ABC\sim\Delta ADB\Rightarrow\widehat{ABC}=\widehat{ADB}\)
Vậy thì \(\widehat{BEA}=\widehat{DBE}+\widehat{BDE}=\widehat{ABC}+\widehat{CBE}=\widehat{ABE}\)
Suy ra tam giác ABE cân tại A hay AB = AE.
Do A, B cố định nên AE không đổi.
Vậy khi cát tuyến ACD quay xung quanh A thì E di chuyển trên đường tròn tâm A, bán kính AB.
d) Ta có AC.AD = 3R2 ; AC + AD = 7R/2
nên ta có phương trình \(AC\left(\frac{7R}{2}-AC\right)=3R^2\)
\(\Leftrightarrow AC^2-\frac{7R}{2}AC+3R^2=0\Leftrightarrow AC=2R\)
\(\Rightarrow AD=\frac{3R}{2}\)

Câu f)
Theo phần d đã chứng minh được $BHOC$ nội tiếp
\(\Rightarrow \widehat{MHB}=\widehat{MCO}\)
Xét tam giác $MHB$ và $MCO$ có:
\(\left\{\begin{matrix} \widehat{MHB}=\widehat{MCO}\\ \text{Chung góc M}\end{matrix}\right.\Rightarrow \triangle MHB\sim \triangle MCO(g.g)\)
\(\Rightarrow \frac{MB}{HB}=\frac{MO}{CO}(1)\)
Giờ ta sẽ chứng minh \(\frac{MO}{CO}=\frac{KM}{KH}\)
\(\Leftrightarrow MO.KH=KM.CO\)
\(\Leftrightarrow MO.KH=CO(MO+OK)\)
\(\Leftrightarrow CO.OK=MO(KH-CO)=MO(KH-KO)\)
\(\Leftrightarrow CO^2=MO.OH\)
\(\Leftrightarrow OA^2=OH.OM\) (đúng theo hệ thức lượng trong tam giác vuông MAO)
Do đó \(\frac{MO}{CO}=\frac{KM}{KH}\). Kết hợp với (1) suy ra \(\frac{KM}{KH}=\frac{BM}{BH}\Rightarrow MK.BH=BM.HK\)
Bạn ơi, mình học là cái dấu hiệu góc ngoài tại 1 đỉnh bằng góc trong tại định đó chỉ được dùng để chứng minh chứ không được dùng làm định lí
Giờ sao ???

a) Vì AE là phân giác \(\widehat{BAC}\)
\(\Rightarrow\) \(\widehat{BAE}=\widehat{EAC}\) hay \(\widehat{BAD}=\widehat{EAC}\)
Xét (O) có: \(\widehat{CBA}=\widehat{AEC}\)(cùng chắn \(\stackrel\frown{AC}\))
hay \(\widehat{DBA}=\widehat{AEC}\)
Xét ΔBAD và ΔEAC có:
\(\widehat{BAD}=\widehat{EAC}\) (cmtrn)
\(\widehat{DBA}=\widehat{AEC}\) (cmtrn)
\(\Rightarrow\) ΔBAD∼ΔEAC (g.g)
\(\Rightarrow\frac{AB}{AD}=\frac{AE}{AC}\) \(\Leftrightarrow AB.AC=AE.AD\) (đpcm)
b) Theo CM a) ΔBAD∼ΔEAC
\(\widehat{BDA}=\widehat{ECA}\) hay \(\widehat{SDA}=\widehat{ECA}\) (1)
Xét (O) có: \(\widehat{ECA}=\widehat{EAS}\) (cùng chắn \(\stackrel\frown{EA}\))
hay \(\widehat{ECA}=\widehat{DAS}\) (2)
Từ (1) và (2) \(\Rightarrow\) \(\widehat{SDA}=\widehat{DAS} \) \((=\widehat{ECA})\)
\(\Rightarrow\) ΔDSA cân tại S
c) Xét (O) có: \(\widehat{BCA}=\widehat{BAS}\) (cùng chắn \(\stackrel\frown{AB}\))
hay \(\widehat{SCA}=\widehat{BAS}\)
Xét ΔCSA và ΔASB có:
\(\widehat{CSA}:chung\)
\(\widehat{SCA}=\widehat{BAS}\)
\(\Rightarrow\) ΔCSA∼ΔASB (g.g)
\(\Rightarrow\frac{SC}{SA}=\frac{SA}{SB}\) \(\Leftrightarrow SC.SB=SA^2\) (đpcm)
d) Xét (O) có: \(\widehat{ECP}=\widehat{EAC}\) (cùng chắn \(\stackrel\frown{EC}\))
hay \(\widehat{QCP}=\widehat{EAC}\) (3)
Theo CM a) \(\widehat{BAE}=\widehat{EAC}\) hay \(\widehat{QAP}=\widehat{EAC}\) (4)
Từ (3) và (4) \(\Rightarrow\) \(\widehat{QCP}=\widehat{QAP}\) \((=\widehat{EAC})\)
\(\Rightarrow\) Tứ giác QACP nội tiếp đường tròn (theo dhnb tứ giác nội tiếp).