K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
PO
10 tháng 4 2022
a) tứ giác AOBM nội tiếp thì có tâm đường tròn là trung điểm OM
cần CM tứ giác OIMB nội tiếp: dùng tổng hai góc đối cộng với nhau bằng 180o, mà đã có OBM=90o, mà I là trung điểm dây cung CD nên OI vuông góc CD luôn => OIM=90o
Vậy tứ giác OIMB nội tiếp thì tâm đường tròn cũng tại trung điểm OM luôn
b) 5 điểm A,I,O,B,M cùng thuộc 1 đtron
=> tứ giác AIOB nội tiếp => góc AIB=AOB (cùng chắn cung)
tứ giác AIOM nội tiếp => góc AIM=AOM (ccc)
mà góc AOM=1/2AOB=AIM=1/2AIB
=> BIM=1/2AIB (đpcm
a, Ta có MA ; MB lần lượt là tiếp tuyến (O)
=> ^MAO = ^MBO = 900
Vì N là trung điểm CD => ON vuông CD
Xét tứ giác OAMB có ^MAO + ^MBO = 1800
mà 2 góc này đối Vậy tứ giác OAMB là tứ giác nt 1 đường tròn
Xét tứ giác NAMO có ^MAO = ^MNO = 900
mà 2 góc này kề, cùng nhìn cạnh MO
Vậy tứ giác NAMO là tứ giác nt 1 đường tròn
mà 2 tứ giác này cùng chứ tam giác OAM
Vậy M;A;N;O;B nt 1 đường tròn
b, Ta có MA = MB ( tc tiếp tuyến cắt nhau ) ; OA = OB
Vậy OM là đường trung trực đoạn AB
Xét tam giác MAO vuông tại A có AH là đường cao
AM^2 = MH.MO ( hệ thức lượng )
c, Xét 5 điểm M;A;N;O;B nt 1 đường tròn có
^MNA = ^MBA ( góc nt chắn cung AM )
^MNB = ^MAB ( góc nt chắn cung MB )
mà MA = MB ( tc tiếp tuyến cắt nhau )
=> MAB cân tại M => ^MAB = ^MBA
=> ^ANM = ^MNB
=> NM là phân giác ^ANB
d, Ta có NK là pg của ^ANB nên \(\dfrac{AK}{KB}=\dfrac{NA}{NB}\)
Lại có NK vuông NS => NS là pg ngoài tam giác ANB \(\dfrac{SA}{SB}=\dfrac{NA}{NB}\)
\(\Rightarrow AK.SB=SA.KB\)