K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 6 2020

gọi G là giao của tia đối tia CD với AM (ta giả sử cung AC  < cung BC)

ý c: từ b suy ra tam giác CDE đồng dạng CFD

=> \(\widehat{ECD}=\widehat{FCD}\) 

ta có: \(\widehat{ECD}+\widehat{GCE}=180^o\) 

\(\widehat{FCD}+\widehat{GCF}=180^o\)

\(\widehat{GCE}=\widehat{GCF}\)suy ra đccm

ý d: CM IK//AB

Ta có: \(\widehat{FDB}=\widehat{FCB}\)(BDCF nôi tiếp đường tròn)

\(\hept{\begin{cases}\widehat{FCB}+\widehat{FBC}=90^o\\\widehat{DCA}+\widehat{CAD}=90^o\end{cases}}\)

mà \(\widehat{CAD}=\widehat{FBC}\)(cùng chắn cung BC)

\(\Rightarrow\widehat{FCB}=\widehat{DCA}\Rightarrow\widehat{FDB}=\widehat{DCA}\)(1)

Tương tự:

\(\hept{\begin{cases}\widehat{ECA}+\widehat{EAC}=90^o\\\widehat{DCB}+\widehat{DBC}=90^o\end{cases}}\)

mà \(\widehat{EAC}=\widehat{DBC}\)(cùng chắn cung AC)

\(\Rightarrow\widehat{ECA}=\widehat{DCB}\). mà \(\widehat{ECA}=\widehat{EDA}\)(tứ giác ECDA nội tiếp nên 2 góc kia cùng chắn cung AE)

\(\Rightarrow\widehat{DCB}=\widehat{EDA}\)(2)

(1)+(2) => \(\widehat{ACD}+\widehat{BCD}=\widehat{FDB}+\widehat{EDA}\)

\(\Rightarrow\widehat{ICK}=\widehat{FDB}+\widehat{EDA}\)\(\Rightarrow\widehat{ICK}+\widehat{IDK}=\widehat{FDB}+\widehat{EDA}+\widehat{IDK}=180^o\)

suy ra tứ giác IDKC nội tiếp \(\Rightarrow\widehat{CKI}=\widehat{CDI}=\widehat{CAE}=\widehat{CBA}\)

mà góc CKI và góc CBA ở vị trí đồng vị suy ra IK//AB. ta đc đccm.

1 tháng 1 2019

1) Hình vẽ câu 1) đúng

Ta có  A E C ^ = A D C ^ = 90 0 ⇒ A E C ^ + A D C ^ = 180 0  do đó, tứ giác ADCE nội tiếp.

2) Chứng minh tương tự tứ giác BDCF nội tiếp.

Do các tứ giác A D C E ,   B D C F  nội tiếp nên  B 1 ^ = F 1 ^ , A 1 ^ = D 1 ^

Mà AM là tiếp tuyến của đường tròn (O) nên  A 1 ^ = 1 2 s đ A C ⏜ = B 1 ^ ⇒ D 1 ^ = F 1 ^ .  

Chứng minh tương tự  E 1 ^ = D 2 ^ .  Do đó,  Δ C D E ∽ Δ C F D g.g

3) Gọi Cx là tia đối của tia CD

Do các tứ giác  A D C E ,   B D C F nội tiếp nên  D A E ^ = E C x ^ , D B F ^ = F C x ^  

M A B ^ = M B A ^ ⇒ E C x ^ = F C x ^  nên Cx là phân giác góc E C F ^ .

4) Theo chứng minh trên  A 2 ^ = D 2 ^ , B 1 ^ = D 1 ^  

Mà  A 2 ^ + B 1 ^ + A C B ^ = 180 0 ⇒ D 2 ^ + D 1 ^ + A C B ^ = 180 0 ⇒ I C K ^ + I D K ^ = 180 0  

Do đó, tứ giác CIKD nội tiếp  ⇒ K 1 ^ = D 1 ^   D 1 ^ = B 1 ^ ⇒ I K / / A B

12 tháng 4 2019

o D C A B E F x M I K

a) Ta có CD vuông AB => \(\widehat{CDA}=90^o\)

CE vuông AM => \(\widehat{CEA}=90^o\)

Xét tứ giác ADCE có :\(\widehat{CDA}+\widehat{CEA}=90^o+90^o=180^o\)

=> Tứ giác ADCE nội tiếp

b) Tương tự ta chứng minh được tứ giác CDBF nội tiếp

Tứ giác ADCE nội tiếp => \(\widehat{CDE}=\widehat{CAE}\)( cùng chắn cung CE)

 Tứ giác CDBF nội tiếp => \(\widehat{CFD}=\widehat{CBD}\)( cùng chắn cung DC)

Mà \(\widehat{CBD}=\widehat{CAE}\)( cùng chắn cung AC của đường tròn (O))

=> \(\widehat{CDE}=\widehat{CFD}\)

Tương tự như trên ta chứng minh được : \(\widehat{DEC}=\widehat{DAC}=\widehat{CBF}=\widehat{FDC}\)

Xét tam giác CDE  và tam giác CFD có: 

\(\widehat{CDE}=\widehat{CFD}\)

\(\widehat{DEC}=\widehat{FDC}\)

=> \(\Delta CDE=\Delta CFD\)

3) Gọi Cx là tia đối của ta CD

Nối OM. Dễ dàng chứng minh được: OM vuông AB, \(\widehat{AOM}=\widehat{BOM}\)(1)

Ta có: Cx//OM ( cùng vuông góc với AB), CE//OA ( cùng vuông với AM)

=> \(\widehat{AOM}=\widehat{ECx}\)(2)

Cx// OM, CF//OB ( cùng vuông với BM)

=> \(\widehat{BOM}=\widehat{FCx}\)(3)

Từ (1), (2), (3), 

=> \(\widehat{ECx}=\widehat{FCx}\)

=> Cx là phân giác góc ECF

4. Ở câu 2 Ta đã chứng minh : \(\widehat{CDE}=\widehat{CBD}\Rightarrow90^o=\widehat{DCB}+\widehat{CBD}=\widehat{CDE}+\widehat{DCB}=\widehat{CDI}+\widehat{DCK}\)

Tương tự như trên chứng minh được: \(\widehat{CDK}+\widehat{ICD}=90^o\)

Xét tứ giác IDKC có: \(\widehat{IDK}+\widehat{ICK}=\widehat{IDC}+\widehat{CDK}+\widehat{ICD}+\widehat{DCK}=\left(\widehat{IDC}+\widehat{DCK}\right)+\left(\widehat{CDK}+\widehat{ICD}\right)\)

\(=90^o+90^o=180^o\)

=> Tứ giác IDKC nội tiếp

=> \(\widehat{IKC}=\widehat{IDC}=\widehat{DBC}\)

=> IK//AB ( 2 góc so le trong)

          

13 tháng 8 2019

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

(góc nội tiếp và góc tạo bởi tia tiếp tuyến và dây cung cùng chắn cung AC) (2)

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

(góc nội tiếp và góc tạo bởi tia tiếp tuyến và dây cung cùng chắn cung CB) (5)

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

15 tháng 10 2018

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

18 tháng 5 2019

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

( góc nội tiếp và góc tạo bởi tia tiếp tuyến và dây cung cùng chắn cung BC)

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

22 tháng 4 2022

Tứ giác ICKD nội tiếp kiểu j vậy ạ bạn có thể cm rõ đc k

 

24 tháng 7 2019

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

13 tháng 2 2016

Hình tự vẻ tui chỉ hướng sơ qua thôi nha

Đầu tiên bà c/m tứ giác AECD và tứ giác BFCD nội tiếp (dựa vào tổng 2 góc đối)

*tứ giác AECD nội tiếp => ECD+EAD=180 độ 

*tứ giác BFCD nội tiếp =>FCD+FBD =180 độ

Mà EAD=FBD (cùng chắn cung AB)

=>ECD=FCD (dc 1 cặp)

Vì B,D,C,F cùng thuộc 1 dtron và CDF ; FBC cùng nhìn CF

=>CDF=FBC

tượng tự ta cũng c/m dc CED=CAB 

Mà CAB=FBC (cùng chắn cung BC)

=>2 góc kia = nhau 

Đến đó dc 2 cặp rồi c/m 2 tam giác đồng dạng xong 1 nốt còn một cái nữa. (mời quý vị đừng rời mắc khỏi màn hình)

Rồi bây giờ c/m vuông góc

Ta có : CAB=CDK (dựa vào mấy cái góc = nhau đã chứng minh ở trên)

Ta lại có 2 tam giác đồng dạng vừa c/m xong

=>IDC=CFD

=>IDC=CBA (CBA=CFD)

suy ra: IDC+CDK=CAB+CBA=180 độ - ICK

=>IDC+CDK+ICK=180 độ

=>IDK + ICK=180 độ

=>tứ giác UCKD nội tiếp

hay I,C,K,D cùng thuộc 1 dtron 

Mà CIK và CDK cùng nhìn CK

=>2 góc đó = nhau 

Mà CDK=CAB

=>CIK=CAB 

=>IK//AB (đồng vị )

=>IK vuông góc CD

13 tháng 2 2016

moi hok lop 6