K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 3 2021

Vì AB là tiếp tuyến của ( O )

Nên \(AB\perp OB\Rightarrow\widehat{ABO}=90^o\)

 Tương tự \(\widehat{ACO}=90^o\)

  Xét tứ giác \(ABOC\)

      \(\widehat{ABO}+\widehat{ACO}=90^o+90^o=180^o\)

  Nên ABOC là tứ giác nội tiếp đường tròn

        => A,B,O,C cùng thuộc một đường tròn

27 tháng 11 2023

Bổ sung đề: đường kính BD

a: Xét tứ giác ABOC có

\(\widehat{ABO}+\widehat{ACO}=90^0+90^0=180^0\)

=>ABOC là tứ giác nội tiếp

=>A,B,O,C cùng thuộc một đường tròn

b: Xét (O) có

AB,AC là tiếp tuyến

=>AB=AC

=>A nằm trên đường trung trực của BC(1)

OB=OC

=>O nằm trên đường trung trực của BC(2)

Từ (1) và (2) suy ra OA là đường trung trực của BC

=>OA\(\perp\)BC(3)

Xét (O) có

ΔBCD nội tiếp

BD là đường kính

Do đó: ΔBCD vuông tại C

=>BC\(\perp\)CD(4)

Từ (3) và (4) suy ra OH//DC

Xét ΔBCD có OH//DC

nên \(\dfrac{OH}{DC}=\dfrac{BO}{BD}=\dfrac{1}{2}\)

=>DC=2OH

c: Bổ sung đề; AD cắt (O) tại điểm thứ hai là E

Xét (O) có

ΔBED nội tiếp

BD là đường kính

Do đó: ΔBED vuông tại E

=>BE\(\perp\)ED tại E

=>BE\(\perp\)AD tại E

Xét ΔBDA vuông tại B có BElà đường cao

nên \(AE\cdot AD=AB^2\left(5\right)\)

Xét ΔOBA vuông tại B có BH là đường cao

nên \(AH\cdot AO=AB^2\left(6\right)\)

Từ (5) và (6) suy ra \(AE\cdot AD=AH\cdot AO\)

=>\(\dfrac{AE}{AO}=\dfrac{AH}{AD}\)

Xét ΔAEH và ΔAOD có

\(\dfrac{AE}{AO}=\dfrac{AH}{AD}\)

\(\widehat{EAH}\) chung

Do đó: ΔAEH đồng dạng với ΔAOD

=>\(\widehat{AHE}=\widehat{ADO}\)

18 tháng 12 2021

a: Xét (O) có 

AB là tiếp tuyến

AC là tiếp tuyến

Do đó: AB=AC

hay A nằm trên đường trung trực của BC(1)

Ta có: OB=OC

nên O nằm trên đường trung trực của BC(2)

Từ (1) và (2) suy ra OA⊥BC

a: góc OBA+góc OCA=90+90=180 độ

=>ABOC nội tiếp

b: Xét(O) có

AB,AC là tiếp tuyến

=>AB=AC

mà OB=OC

nên OA là trung trực của BC

=>M nằm trên đường trung trực của BC

mà M thuộc (O)

nên M là điểm chính giữa của cung CB

góc ABM+góc OBM=90 độ

góc CBM+góc OMB=90 độ

mà góc OBM=góc OMB

nên góc ABM=góc CBM

=>BM là phân giác của góc ABC

a) Xét (O) có

AB là tiếp tuyến có B là tiếp điểm(gt)

AC là tiếp tuyến có C là tiếp điểm(gt)

Do đó: AB=AC(Tính chất hai tiếp tuyến cắt nhau)

Ta có: OB=OC(=R)

nên O nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(1)

Ta có: AB=AC(cmt)

nên A nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(2)

Từ (1) và (2) suy ra OA là đường trung trực của BC

hay \(OA\perp BC\)(đpcm)

b) Xét tứ giác ABOC có 

\(\widehat{OBA}\) và \(\widehat{OCA}\) là hai góc đối

\(\widehat{OBA}+\widehat{OCA}=180^0\left(90^0+90^0=180^0\right)\)

Do đó: ABOC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

nên A,B,O,C cùng thuộc một đường tròn(đpcm)

 

22 tháng 2 2021

Bt 1 : Hãy tìm CTHH của kí X . Biết rằng : 

- Khi X nặng hơn khí hiđro là 8 lần 

- Thành phần theo khối lượng của khíkhí hiđro lượng của khí X là 75% C và 25% H  

 

17 tháng 12 2021

Xét tứ giác OBAC có

\(\widehat{OBA}+\widehat{OCA}=180^0\)

Do đó: OBAC là tứ giác nội tiếp

25 tháng 12 2021

a: Xét tứ giác ABOC có

\(\widehat{ABO}+\widehat{ACO}=180^0\)

Do đó: ABOC là tứ giác nội tiếp

a) Gọi M là trung điểm của OA

Ta có: ΔOBA vuông tại B(OB⊥BA)

mà BM là đường trung tuyến ứng với cạnh huyền OA(M là trung điểm của OA)

nên \(BM=\dfrac{OA}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)(1)

Ta có: ΔOCA vuông tại C(OC⊥CA)

mà CM là đường trung tuyến ứng với cạnh huyền OA(M là trung điểm của OA)

nên \(CM=\dfrac{OA}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)(2)

Ta có: M là trung điểm của OA(gt)

nên \(OM=AM=\dfrac{OA}{2}\)(3)

Từ (1), (2) và (3) suy ra MA=MB=MO=MC

hay A,B,O,C cùng thuộc một đường tròn(đpcm)

b) Xét (O) có

AB là tiếp tuyến có B là tiếp điểm(gt)

AC là tiếp tuyến có C là tiếp điểm(gt)

Do đó: AB=AC(Tính chất hai tiếp tuyến cắt nhau)

Ta có: AB=AC(cmt)

nên A nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(1)

Ta có: OB=OC(=R)

nên O nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(2)

Từ (1) và (2) suy ra OA là đường trung trực của BC

⇔OA⊥BC

mà OA cắt BC tại H(gt)

nên OA⊥BC tại H(đpcm)

26 tháng 11 2023

a: Xét (O) có

AB,AC là tiếp tuyến

Do đó: AB=AC

=>A nằm trên đường trung trực của BC(1)

OB=OC

=>O nằm trên đường trung trực của BC(2)

Từ (1) và (2) suy ra OA là đường trung trực của BC

=>OA\(\perp\)BC tại trung điểm của BC

=>OA\(\perp\)BC tại H và H là trung điểm của BC

Xét ΔOBA vuông tại B có BH là đường cao

nên \(AH\cdot AO=AB^2\left(1\right)\)

b: Xét (O) có

ΔBED nội tiếp

BD là đường kính

Do đó: ΔBED vuông tại E

=>BE\(\perp\)ED tại E

=>BE\(\perp\)AD tại E

Xét ΔDBA vuông tại B có BE làđường cao

nên \(AE\cdot AD=AB^2\left(2\right)\)

Từ (1) và (2) suy ra \(AH\cdot AO=AE\cdot AD\)