Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét (O) có
AB,AC là các tiếp tuyến
nên AB=AC
mà OB=OC
nên OA là trung trực của BC
Xét tứ giác OBAC có
góc OBA+góc OCA=180 độ
nên OBAC là tứ giác nội tiếp
b: Xét ΔAEC và ΔACD có
gó ACE=góc ADC
góc EAC chung
Do đo: ΔAEC đồng dạng với ΔACD
=>AE/AC=AC/AD
=>AC^2=AE*AD
a: Xét (O) có
ΔCED nội tiếp
CD là đườngkính
=>ΔCED vuông tại E
Xét (O) có
AB,AC là tiếp tuyến
nên AB=AC
mà OB=OC
nên OA là trung trực của BC
=>OA vuông góc với BC
b: Xét ΔACD vuông tại C có CE là đường cao
nên AE*AD=AC^2
=>AE*AD=AH*AO
=>AE/AO=AH/AD
=>ΔAEH đồng dạng với ΔAOD
=>góc AHE=góc ADO
Dễ thấy: A,B,O,K,CA,B,O,K,C nằm trên đường tròn đường kính OAOA .
Ta có: AE.AD=AB2=AH.AO⇒E,D,H,OAE.AD=AB2=AH.AO⇒E,D,H,O cùng thuộc 1 đường tròn
Mặt khác: A,E,B,HA,E,B,H cùng thuộc đường tròn đường kính ABAB nên ˆEHF=ˆBAD=ˆEBD=ˆEOFEHF^=BAD^=EBD^=EOF^
Suy ra: E,H,O,FE,H,O,F đồng viên. Suy ra: E,H,O,F,DE,H,O,F,D cùng thuộc đường tròn đường kính OFOF.
Gọi JJ là giao điểm của ININ và ADAD.
Xét 2 tam giác: ΔIHJΔIHJ và ΔFHDΔFHD
Ta có: ˆJIH=ˆAIJJIH^=AIJ^ (t/c đối xứng) =ˆABC=ˆDFH=ABC^=DFH^
Mặt khác:ˆIHJ=ˆIAJIHJ^=IAJ^(t/c đối xứng) =ˆEOF=ˆDHF=EOF^=DHF^
Suy ra:ΔIHJΔIHJ và ΔFHDΔFHD đồng dạng nên JHHD=IHFHJHHD=IHFH
Mà IBFNIBFN là hình bình hành nên NF=IB=IHNF=IB=IH hay JHHD=NFFHJHHD=NFFH
Mà ˆJHD=ˆNFHJHD^=NFH^ (dùng cộng góc, góc nội tiếp,...)
nên ΔJHDΔJHD và ΔNFHΔNFH đồng dạng nên JHDNJHDN nội tiếp
Ta suy ra:ˆNHD=ˆNJD=ˆHDFNHD^=NJD^=HDF^ nên suy ra: NH=NDNH=ND
Mà NH=NANH=NA (t/c đối xứng) nên NA=NDNA=ND(đ.p.c.m)
a: Xét (O) có
AB,AC là các tiếp tuyến
nên AB=AC
mà OB=OC
nên OA là trung trực của BC
Xét tứ giác OBAC có
góc OBA+góc OCA=180 độ
nên OBAC là tứ giác nội tiếp
b: Xét ΔAEC và ΔACD có
gó ACE=góc ADC
góc EAC chung
Do đo: ΔAEC đồng dạng với ΔACD
=>AE/AC=AC/AD
=>AC^2=AE*AD
Gọi giao của BC và OA là F
Xét (O) có
AB,AC là tiếp tuyến
=>AB=AC
mà OB=OC
nên OA là trung trực của BC
=>F là trung điểm của BC
Xet ΔOIA vuông tại I và ΔOFS vuông tại F có
góc IOA chung
=>ΔOIA đồng dạng với ΔOFS
=>OI/OF=OA/OS
=>OI*OS=OF*OA=OB^2=OD^2
=>SD là tiếp tuyến của (O)