Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tam giác BCK vuông tại K có KF là đường trung tuyến nên \(KF=\dfrac{BC}{2}=FB\). Suy ra tam giác FBK cân tại F.
Từ đó FI vuông góc với BK.
Ta có \(\widehat{EIF}=90^o-\widehat{BIE}=90^o-\widehat{KIN}=\widehat{KNI}=\widehat{FBE}\).
Suy ra tứ giác EBIF nội tiếp.
Từ đó \(\widehat{AFE}=90^o-\widehat{BFE}=90^o-\widehat{BIE}=90^o-\widehat{KIN}=\widehat{KNI}=\widehat{ACE}\) nên tứ giác AEFC nội tiếp.
Ta có \(\widehat{EAF}=\widehat{ECF}=\widehat{ABE}\) nên AN là tiếp tuyến của (ABE).
a: ΔODE cân tại O
mà OM là trung tuyến
nên OM vuông góc DE
=>góc OMA=90 độ=góc OCA=góc OBA
=>O,A,B,M,C cùng thuộc 1 đường tròn
b: Xét ΔBSC và ΔCSD có
góc SBC=góc SCD
góc S chung
=>ΔBSC đồng dạng với ΔCSD
=>SB/CS=SC/SD
=>CS^2=SB*SD
góc DAS=gócEBD
=>góc DAS=góc ABD
=>ΔSAD đồng dạng với ΔSBA
=>SA/SB=SD/SA
=>SA^2=SB*SD=SC^2
=>SA=SC
c; BE//AC
=>EH/SA=BH/SC=HJ/JS
mà SA=SC
nênHB=EH
=>H,O,C thẳng hàng
a: Xét (O) có
AB,AC là các tiếp tuyến
Do đó: AB=AC và AO là phân giác của góc BAC
Ta có: AB=AC
=>A nằm trên đường trung trực của BC(1)
Ta có: OB=OC
=>O nằm trên đường trung trực của BC(2)
Từ (1) và (2) suy ra OA là đường trung trực của BC
=>OA\(\perp\)BC tại H và H là trung điểm của BC
Xét ΔBOA vuông tại B có \(cosBOA=\dfrac{BO}{OA}=\dfrac{1}{2}\)
nên \(\widehat{BOA}=60^0\)
Xét ΔBOA vuông tại B có BH là đường cao
nên \(OH\cdot OA=OB^2\)
=>\(OH\cdot2R=R^2\)
=>\(OH=\dfrac{R^2}{2R}=\dfrac{R}{2}\)
b: Ta có: \(\widehat{ABM}+\widehat{OBM}=\widehat{OBA}=90^0\)
\(\widehat{HBM}+\widehat{OMB}=90^0\)(ΔHMB vuông tại H)
mà \(\widehat{OBM}=\widehat{OMB}\)
nên \(\widehat{ABM}=\widehat{HBM}\)
=>BM là phân giác của góc ABH
Xét ΔABC có
BM,AM là các đường phân giác
BM cắt AM tại M
Do đó: M là tâm đường tròn nội tiếp ΔABC
a: Xét tứ giác AIOC có \(\widehat{AIO}+\widehat{ACO}=180^0\)
nên AIOC là tứ giác nội tiếp
Xét (O) có
AB là tiếp tuyến
AC là tiếp tuyến
Do đó: AB=AC
mà OB=OC
nên OA là đường trung trực của BC
hay OA⊥BC
b: Xét ΔABD và ΔAEB có
\(\widehat{ABD}=\widehat{AEB}\)
\(\widehat{BAD}\) chung
Do đó: ΔABD\(\sim\)ΔAEB
Suy ra: AB/AE=AD/AB
hay \(AB^2=AD\cdot AE\)
a: Xét tứ giác AIOC có \(\widehat{AIO}+\widehat{ACO}=180^0\)
nên AIOC là tứ giác nội tiếp
Xét (O) có
AB là tiếp tuyến
AC là tiếp tuyến
Do đó: AB=AC
mà OB=OC
nên OA là đường trung trực của BC
hay OA⊥BC
b: Xét ΔABD và ΔAEB có
\(\widehat{ABD}=\widehat{AEB}\)
\(\widehat{BAD}\) chung
Do đó: ΔABD\(\sim\)ΔAEB
Suy ra: AB/AE=AD/AB
hay \(AB^2=AD\cdot AE\)
Câu c.
Gọi K là trung điểm của BH
Chỉ ra K là trực tâm của tam giác BMI
Chứng minh MK//EI
Chứng minh M là trung điểm của BE (t.c đường trung bình)