Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Dễ thấy AMON nội tiếp vì \(\widehat{AMO}=\widehat{ANO}=90^o\)
b. Do H là trung điểm BC nên \(OH⊥HA\), vậy H, M, A, N, O cùng thuộc đường tròn đường kính AO.
Ta có \(\widehat{NHA}=\widehat{NMA}=\widehat{MNA}=\widehat{MHA}\) (Góc nội tiếp cùng chắn cung và AM = AN)
Vậy HA là phân giác góc MHN.
c. Xét đường tròn ngoại tiếp tứ giác HMAN có: \(\widehat{HNM}=\widehat{HAM}\) (Góc nội tiếp cùng chắn cung HM)
Mà \(\widehat{HAM}=\widehat{HBE}\)(Đồng vị)
Vậy nên \(\widehat{HNE}=\widehat{HBE}\) hay HNBE nội tiếp.
Suy ra \(\widehat{ENB}=\widehat{EHB}\) (Cùng chắn cung EB)
Mà \(\widehat{ENB}=\widehat{MCB}\) (Cùng chắn cung MB) nên \(\widehat{EHB}=\widehat{MCB}\)
Chúng lại ở vị trí đồng vị nên HE // CM.
a: Xét tứ giác OHAN có
\(\widehat{OHA}+\widehat{ONA}=180^0\)
Do đó: OHAN là tứ giác nội tiếp
hay O,H,A,N cùng thuộc 1 đường tròn(1)
Xét tứ giác OMAN có
\(\widehat{OMA}+\widehat{ONA}=180^0\)
Do đó: OMAN là tứ giác nội tiếp
hay O,M,A,N cùng thuộc 1 đường tròn(2)
Từ (1) và (2) suy ra O,H,M,A,N cùng nằm trên 1 đường tròn
a) Trong (O) có BC là dây cung không đi qua O có H là trung điểm BC
\(\Rightarrow OH\bot BC\Rightarrow\angle OHA=90\) mà \(\left\{{}\begin{matrix}\angle ONA=90\\\angle OMA=90\end{matrix}\right.\Rightarrow AMHO,ANOH\) nội tiếp \(\Rightarrow A,M,N,O,H\) cùng thuộc 1 đường tròn
b) \(AMHN\) nội tiếp \(\Rightarrow\angle AHN=\angle AMN=\angle ANM=\angle AHM\)
\(\Rightarrow\) HA là phân giác góc MHN
c) \(BE\parallel AM\Rightarrow \angle HBE=\angle HAM=\angle HNM\Rightarrow BEHN\) nội tiếp
\(\Rightarrow\angle BHE=\angle BNE=\angle BNM=\angle BCM\Rightarrow\)\(HE\parallel CM\)
a, Chú ý: A M O ^ = A I O ^ = A N O ^ = 90 0
b, A M B ^ = M C B ^ = 1 2 s đ M B ⏜
=> DAMB ~ DACM (g.g)
=> Đpcm
c, AMIN nội tiếp => A M N ^ = A I N ^
BE//AM => A M N ^ = B E N ^
=> B E N ^ = A I N ^ => Tứ giác BEIN nội tiếp => B I E ^ = B N M ^
Chứng minh được: B I E ^ = B C M ^ => IE//CM
d, G là trọng tâm DMBC Þ G Î MI
Gọi K là trung điểm AO Þ MK = IK = 1 2 AO
Từ G kẻ GG'//IK (G' Î MK)
=> G G ' I K = M G M I = M G ' M K = 2 3 I K = 1 3 A O không đổi (1)
MG' = 2 3 MK => G' cố định (2). Từ (1) và (2) có G thuộc (G'; 1 3 AO)
1)
c) Ta có : CK // AB ( \(\perp\)BD )
Xét \(\Delta ABD\)theo định lí Ta-let,ta có :
\(\frac{IK}{AB}=\frac{KD}{BD}\Rightarrow IK.BD=AB.KD\)( 1 )
Xét \(\Delta ABO\)và \(\Delta CKD\)có
\(\widehat{ABO}=\widehat{CKD}=90^o\); \(\widehat{AOB}=\widehat{CDK}\)( cùng bù \(\widehat{CBD}\))
\(\Rightarrow\Delta ABO\approx\Delta CKD\left(g.g\right)\)
\(\Rightarrow\frac{KD}{BO}=\frac{CK}{AB}\Rightarrow CK.BO=KD.AB\)( 2 )
Từ ( 1 ) và ( 2 ) suy ra \(CK.BO=IK.BD=IK.2BO\)
\(\Rightarrow CK=2IK\)\(\Rightarrow\)I là trung điểm của CK
2)
c) dễ thấy AM = AN \(\Rightarrow\Delta AMN\)cân tại A \(\Rightarrow\widehat{AMN}=\widehat{ANM}\)( 1 )
vì H là trung điểm dây BC nên \(OH\perp BC\)hay \(\widehat{AHO}=90^o\)
Từ đó dễ dàng suy ra 5 điểm A,M,O,H,N cùng thuộc 1 đường tròn
\(\Rightarrow\)Từ giác AMHN nội tiếp \(\Rightarrow\widehat{AHN}=\widehat{AMN};\widehat{AHM}=\widehat{ANM}\)( 2 )
Từ ( 1 ) và ( 2 ) suy ra \(\widehat{AHN}=\widehat{AHM}\)\(\Rightarrow\)HA là tia phân giác \(\widehat{MHN}\)
d) BE // AM \(\Rightarrow\widehat{EBH}=\widehat{MAB}\)
\(\widehat{MAH}=\widehat{MNH}\)( do tứ giác AMHN nội tiếp )
\(\Rightarrow\widehat{EBH}=\widehat{MNH}\)\(\Rightarrow\)Tứ giác EBNH nội tiếp
\(\Rightarrow\widehat{EHB}=\widehat{ENB}\)
Mặt khác : \(\widehat{ENB}=\widehat{MCB}\left(=\frac{1}{2}sđ\widebat{MB}\right)\)
Suy ra \(\widehat{EHB}=\widehat{MCB}\Rightarrow HE//MC\)
Nếu cậu chưa thấy hình thì vào thống kê hỏi đáp của tui là thấy nha
~Study well~
:]