K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

   Bài 2. Cho đường tròn (O), một điểm A nằm bên ngoài (O). Kẻ các tiếp tuyến AB, AC với (O) (B, C là các tiếp điểm).a) Khẳng định nào sau đây là đúng?A. OA // BC.                                                                           B. OA ^ BC.C. OA là đường trung trực của BC.                                        D. OA =...
Đọc tiếp

   Bài 2. Cho đường tròn (O), một điểm A nằm bên ngoài (O). Kẻ các tiếp tuyến AB, AC với (O) (B, C là các tiếp điểm).

a) Khẳng định nào sau đây là đúng?

A. OA // BC.                                                                           B. OA ^ BC.

C. OA là đường trung trực của BC.                                        D. OA = 2BC.

b) Biết OA = 10cm; OB = 6cm. Chu vi tam giác ABC là

A. 20cm.                      B. 22cm.                     C. 24cm.                         D. 26cm.

c) Biết OB = 4cm; AB = 6cm. Độ dài dây BC là

A. .              B. .             A. .               A. .     

   Bài 3. Từ điểm A nằm ngoài (O), kẻ các tiếp tuyến AB, AC với (O). D là một điểm bất kì trên cung nhỏ BC. Tiếp tuyến tại D của (O) cắt AB, AC lần lượt tại M và N. Biết OA = 5cm và OB = 3cm. Chu vi tam giác AMN là

A. 4cm.                          B. 6cm.                       C. 8cm.                      D. 10cm

1
18 tháng 12 2021

Bài 2: C

18 tháng 12 2021

bn ơi mấy câu kia thì đáp án j vậy

 

29 tháng 12 2021

Chọn B

13 tháng 5 2018

a. AB là tiếp tuyến của đt (O) tại B (gt) => \(\widehat{OBA}=90^o\)

AC là tiếp tuyến của đt (O) tại C (gt) => \(\widehat{OCA}=90^o\)

Xét tứ giác ABOC có: \(\widehat{OBA}+\widehat{OCA}=90^o+90^o=180^o\)=> Tứ giác ABOC nội tiếp đường tròn (Dhnb) => Đpcm

b. 

Xét đt (O) có: \(\widehat{ABD}=\frac{1}{2}sđ\widebat{BD}\)(T/c góc tạo bởi tiếp tuyến và dây cung)

\(\widehat{BED}=\widehat{BEA}=\frac{1}{2}sđ\widebat{BD}\)(T/c góc nội tiếp của đt) (Do A,D,E (gt) => \(\widehat{BED}=\widehat{BEA}\))

=> \(\widehat{ABD}=\widehat{BEA}\)

Xét \(\Delta ABD\)và \(\Delta AEB\)có:

\(\widehat{A}chung\)

\(\widehat{ABD}=\widehat{BEA}\left(cmt\right)\)

=> \(\Delta ABD~\Delta AEB\left(g.g\right)\)=> \(\frac{AB}{AE}=\frac{AD}{AB}\Rightarrow AB^2=AD.AE\RightarrowĐpcm\)

c. Vì F là điểm đối xứng của D qua OA => OA là đường trung trực của DF (Đ/n đối xứng trục) => OD = OF = R (T/c điểm thuộc đường trung trực) => F \(\in\left(O\right)\)và \(\Delta ODF\)cân tại O (Đ/n) => OA vừa là đường trung trực của đoạn thẳng DF đồng thời là đường phân giác của \(\widehat{DOF}\)(T/c của \(\Delta\)cân)=> \(\widehat{DOA}=\widehat{FOA}=\frac{1}{2}\widehat{DOF}=\frac{1}{2}sđ\widebat{DF}\)

Xét đt (O) có: \(\widehat{DEF}=\frac{1}{2}sđ\widebat{DF}\)(T/c góc nội tiếp) => \(\widehat{DOA}=\widehat{DEF}\)(1)

Ta có: AB,AC lần lượt là 2 tiếp tuyến của đt (O) (B,C là 2 tiếp điểm) (gt) => OA là tia phân giác của \(\widehat{BOC}\)(Định lý về 2 tiếp tuyến cắt nhau)

Lại có: OB = OC = R => \(\Delta OBC\)cân tại O (Đ/n) => OA vừa là phân giác đồng thời là đường cao của \(\Delta OBC\)(T/c của \(\Delta\)cân)=> \(OA\perp BC\)tại H (H là giao điểm của OA và BC)

Áp dụng hệ thức lượng trong \(\Delta\)vuông ABO (vuông tại B) với đường cao BH ta được: \(AB^2=AH.AO\)

Mà \(AB^2=AD.AE\left(cmt\right)\)=> \(AD.AE=AH.AO\Leftrightarrow\frac{AD}{AO}=\frac{AH}{AE}\)

Xét \(\Delta AHD\)và \(\Delta AEO\)có:

\(\widehat{A}\)chung

\(\frac{AD}{AO}=\frac{AH}{AE}\left(cmt\right)\)

=> \(\Delta AHD~\Delta AEO\left(c.g.c\right)\)=> \(\widehat{AHD}=\widehat{AEO}=\widehat{DEO}\left(Do\overline{A,D,E}\Rightarrow\widehat{AEO}=\widehat{DEO}\right)\)=> Tứ giác DEOH là tứ giác nội tiếp (Dhnb) => \(\widehat{DEH}=\widehat{DOH}=\widehat{DOA}\)(2 góc nội tiếp cùng chắn \(\widebat{DH}\)) (Do A,H,O => \(\widehat{DOH}=\widehat{DOA}\)) (2)

Từ (1) và (2) => \(\widehat{DEF}=\widehat{DEH}\)=> 3 điểm E,F,H thẳng hàng ( 2 góc cùng số đo, có 1 cạnh chung, 2 cạnh còn lại của 2 góc cùng nằm về 1 phía so với cạnh chung thì 2 cạnh còn lại trùng nhau) => Đpcm. 

13 tháng 5 2018

bn con cau may chuabt lam zay

Cho đường tròn (O) bán kính R = 2 cm. Điểm A nằm ngoài đường tròn. Từ A vẽ các tiếp tuyến AB,AC với đường tròn (B,C là các tiếp điểm). AO cắt BC tại D.  ( VẼ HÌNH HỘ MÌNH )                                                                                               a) Cmr 4 điểm A,B,O,C cùng thuộc 1 đường tròn và OA là trung trực của BC (Ý 1 CM THEO 2 TAM GIÁC NỘI TIẾP,...
Đọc tiếp

Cho đường tròn (O) bán kính R = 2 cm. Điểm A nằm ngoài đường tròn. Từ A vẽ các tiếp tuyến AB,AC với đường tròn (B,C là các tiếp điểm). AO cắt BC tại D.  ( VẼ HÌNH HỘ MÌNH )                                                                                               a) Cmr 4 điểm A,B,O,C cùng thuộc 1 đường tròn và OA là trung trực của BC (Ý 1 CM THEO 2 TAM GIÁC NỘI TIẾP, KHI CM NÊU RÕ NHỮNG DỮ KIỆN ĐỀ BÀI CHO)                                                                                              b) Vẽ đk BE của đường tròn (O), AE cắt đt (O) tại điểm thứ hai F. Gọi G là trung điểm của EF. Đt OG cắt đt BC tại H. Tính tích OA.OD và cm OA.OD=OG.OH                                                                                                     c) CM EH là tiếp tuyến của đt (O)

1
31 tháng 12 2023

Bổ sung đề; OA cắt BC tại D

a: Ta có: ΔOBA vuông tại B

=>B nằm trên đường tròn đường kính OA(1)

Ta có: ΔOCA vuông tại C

=>C nằm trên đường tròn đường kính OA(2)

Từ (1) và (2) suy ra B,C,O,A cùng thuộc đường tròn đường kính OA

Xét (O) có

AB,AC là các tiếp tuyến

Do đó: AB=AC

=>A nằm trên đường trung trực của BC(3)

Ta có: OB=OC

=>O nằm trên đường trung trực của BC(4)

Từ (3) và (4) suy ra OA là đường trung trực của BC

b: OA là đường trung trực của BC

Do đó: OA\(\perp\)BC tại D và D là trung điểm của BC

Xét ΔOBA vuông tại B có BD là đường cao

nên \(OD\cdot OA=OB^2=R^2\)

Ta có: ΔOEF cân tại O

mà OG là đường trung tuyến

nên OG\(\perp\)EF tại G

Xét ΔOGA vuông tại G và ΔODH vuông tại D có

góc GOA chung

Do đó: ΔOGA đồng dạng với ΔODH

=>\(\dfrac{OG}{OD}=\dfrac{OA}{OH}\)

=>\(OG\cdot OH=OA\cdot OD\)

c: Ta có: \(OG\cdot OH=OA\cdot OD\)

\(OA\cdot OD=R^2\)

Do đó: \(OG\cdot OH=R^2=OE^2\)

=>\(\dfrac{OG}{OE}=\dfrac{OE}{OH}\)

Xét ΔOGE và ΔOEH có

\(\dfrac{OG}{OE}=\dfrac{OE}{OH}\)

\(\widehat{GOE}\) chung

Do đó: ΔOGE đồng dạng với ΔOEH

=>\(\widehat{OGE}=\widehat{OEH}\)

=>\(\widehat{OEH}=90^0\)

=>HE là tiếp tuyến của (O)

31 tháng 12 2023

đợi mãi mới thấy bạn trả lời

 

Cho đường tròn (O) bán kính R = 2 cm. Điểm A nằm ngoài đường tròn. Từ A vẽ các tiếp tuyến AB,AC với đường tròn (B,C là các tiếp điểm). AO cắt BC tại D.  ( VẼ HÌNH HỘ MÌNH )                                                                                               a) Cmr 4 điểm A,B,O,C cùng thuộc 1 đường tròn và OA là trung trực của BC (Ý 1 CM THEO 2 TAM GIÁC NỘI TIẾP,...
Đọc tiếp

Cho đường tròn (O) bán kính R = 2 cm. Điểm A nằm ngoài đường tròn. Từ A vẽ các tiếp tuyến AB,AC với đường tròn (B,C là các tiếp điểm). AO cắt BC tại D.  ( VẼ HÌNH HỘ MÌNH )                                                                                               a) Cmr 4 điểm A,B,O,C cùng thuộc 1 đường tròn và OA là trung trực của BC (Ý 1 CM THEO 2 TAM GIÁC NỘI TIẾP, KHI CM NÊU RÕ NHỮNG DỮ KIỆN ĐỀ BÀI CHO)                                                                                              b) Vẽ đk BE của đường tròn (O), AE cắt đt (O) tại điểm thứ hai F. Gọi G là trung điểm của EF. Đt OG cắt đt BC tại H. Tính tích OA.OD và cm OA.OD=OG.OH                                                                                                     c) CM EH là tiếp tuyến của đt (O)

1

a) Xét tứ giác OBAC có

\(\widehat{OBA}\) và \(\widehat{OCA}\) là hai góc đối

\(\widehat{OBA}+\widehat{OCA}=180^0\left(90^0+90^0=180^0\right)\)

Do đó: OBAC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

22 tháng 3 2018

a)  Chứng minh tứ giác ABOC nội tiếp được đường tròn.

A B O ^ = 90 0 A C O ^ = 90 0 A B O ^ + A C O ^ = 180 0

=> tứ giác ABOC nội tiếp được đường tròn.

b)  Vẽ cát tuyến ADE  của (O) sao cho ADE  nằm giữa 2 tia AO, AB; D, E Î (O) và D nằm giữa A, E. Chứng minh  A B 2 = A D . A E .

Tam giác ADB đồng dạng với tam giác ABE

⇒ A B A E = A D A B ⇔ A B 2 = A D . A E

c)  Gọi F là điểm đối xứng của D qua AO, H là giao điểm của AO và BC. Chứng minh: ba điểm E, F, H  thẳng hàng.

Ta có  D H A ^ = E H O ^

nên  D H A ^ = E H O ^ = A H F ^ ⇒ A H E ^ + A H F ^ = 180 0 ⇒ 3 điểm E, F, H  thẳng hàng.

19 tháng 5 2022

Có 1 phần câu trả lời ở đây.

Giải toán: Bài hình trong đề thi HK2 Lớp 9 | Rất phức tạp. - YouTube

a) Xét tứ giác ABOC có

\(\widehat{OBA}+\widehat{OCA}=180^0\left(90^0+90^0=180^0\right)\)

Do đó: ABOC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

Xét (O) có 

AB là tiếp tuyến có B là tiếp điểm(gt)

AC là tiếp tuyến có C là tiếp điểm(gt)

Do đó: AB=AC(Tính chất hai tiếp tuyến cắt nhau)

Ta có: OB=OC(=R)

nên O nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(1)

Ta có: AB=AC(cmt)

nên A nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(2)

Từ (1) và (2) suy ra OA là đường trung trực của BC

hay OA\(\perp\)BC

Xét ΔOBC có OB=OC(=R)

nên ΔOBC cân tại O(Định nghĩa tam giác cân)

mà OH là đường cao ứng với cạnh BC

nên H là trung điểm của BC(Đpcm)

28 tháng 6 2021

sao không  có câu B bạn ơi ?? có câu c càng tốt nhưng không làm được thì bỏ qua . nhưng bạn giúp minh câu B với , thankkk