K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét (O) có 

AB là tiếp tuyến

AC là tiếp tuyến

Do đó: AB=AC

hay A nằm trên đường trung trực của BC(1)

Ta có: OB=OC

nên O nằm trên đường trung trực của BC(2)

Từ (1) và (2) suy ra OA là đường trung trực của BC

hay OA\(\perp\)BC(3)

b: Xét (O) có

ΔBCD nội tiếp

BD là đường kính

Do đó: ΔBCD vuông tại C

=>BC\(\perp\)CD(4)

Từ (3) và (4) suy ra CD//OA

a: Xét (O) có

AB là tiếp tuyến

AC là tiếp tuyến

Do đó: AB=AC

hay A nằm trên đường trung trực của BC(1)

Ta có: OB=OC

nên O nằm trên đường trung trực của BC(2)

Từ (1) và (2) suy ra OA là đường trung trực của BC

hay OA\(\perp\)BC

17 tháng 12 2023

cậu làm được câu này chưa ạ giải cho tớ với:<

21 tháng 12 2023

loading...  loading...  loading...  

21 tháng 12 2023

camon<33

a: Xét (O) có

AB,AC là tiếp tuyến

Do đó: AB=AC

=>A nằm trên đường trung trực của BC(1)

OB=OC

=>O nằm trên đường trung trực của BC(2)

Từ (1) và (2) suy ra OA là đường trung trực của BC

=>OA\(\perp\)BC tại trung điểm của BC

=>OA\(\perp\)BC tại H và H là trung điểm của BC

b: Xét (O) có

ΔBED nội tiếp

BD là đường kính

Do đó: ΔBED vuông tại E

=>BE\(\perp\)ED tại E

=>BE\(\perp\)AD tại E

Xét ΔDBA vuông tại B có BE là đường cao

nên \(AE\cdot AD=AB^2\left(3\right)\)

Xét ΔOBA vuông tại B có BH là đường cao

nên \(AH\cdot AO=AB^2\left(4\right)\) và \(OH\cdot OA=OB^2\)

Từ (3) và (4) suy ra \(AE\cdot AD=AH\cdot AO\)

c: Xét ΔOKH vuông tại K và ΔOIA vuông tại I có

\(\widehat{KOH}\) chung

Do đó: ΔOKH đồng dạng với ΔOAI

=>\(\dfrac{OK}{OA}=\dfrac{OH}{OI}\)

=>\(OK\cdot OI=OH\cdot OA\)

mà \(OH\cdot OA=OB^2\)

nên \(OK\cdot OI=OB^2=R^2=OD^2\)

=>\(\dfrac{OK}{OD}=\dfrac{OD}{OI}\)

Xét ΔOKD và ΔODI có

\(\dfrac{OK}{OD}=\dfrac{OD}{OI}\)

\(\widehat{KOD}\) chung

Do đó: ΔOKD đồng dạng với ΔODI

=>\(\widehat{ODK}=\widehat{OID}=90^0\)

=>KD là tiếp tuyến của (O)

a) Xét tứ giác OBAC có 

\(\widehat{OBA}\) và \(\widehat{OCA}\) là hai góc đối

\(\widehat{OBA}+\widehat{OCA}=180^0\left(90^0+90^0=180^0\right)\)

Do đó: OBAC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

hay O,B,A,C cùng thuộc 1 đường tròn(đpcm)

17 tháng 12 2021

Từ điểm A ở ngoài đường tròn [O;R] vẽ hai tiếp tuyến AB;AC với đường tròn [B,C là tiếp điểm ]. Gọi H là chân đường vuông góc kẻ từ B đến đường kính CD.

a cm 4 điểm A,B,C,O cùng thuộc 1 đường tròn

b cm BD //OA