Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
vì a+b/a-b=c+a/c-a =>a+b/c+a=a-b/c-a
Dựa vào tính chất của dãy tỉ số bằng nhau ta có : a+b/c+a=a-b/c-a=a+b+(a-b)/c+a+(c-a)=a+b+a-b/c+a+c-a=2a/2c=a/c (1)
a+b/c+a=a-b/c-a=a+b-(a-b)/c+a-(c-a)=a+b-a+b/c+a-c+a=2b/2a=b/a (2)
Từ (1),(2) ta có: a/c=b/a => a^2=bc
\(\frac{a+b}{a-b}=\frac{c+a}{c-a}\)\(\Leftrightarrow\frac{a-b+2b}{a-b}=\frac{c-a+2a}{c-a}\)\(\Leftrightarrow1+\frac{2b}{a-b}=1+\frac{2a}{c-a}\)
\(\Leftrightarrow\frac{2b}{a-b}=\frac{2a}{c-a}\)\(\Rightarrow\)2b . (c - a) = 2a . (a - b) \(\Rightarrow\) 2bc - 2ba = 2a2 - 2ab
\(\Leftrightarrow\) 2bc = 2a2 \(\Leftrightarrow\) bc = a2 (điều phải chứng minh)
Từ giả thiết suy ra :\(\left(a+b\right)\left(c-a\right)=\left(a-b\right)\left(c+a\right)\)
Hay \(ac-a^2+bc-ab=ac-bc+a^2-ab\)
\(\Leftrightarrow-\left(a^2-bc+ab\right)=-\left(bc-a^2+ab\right)\)(bớt ac ở mỗi vế
\(\Leftrightarrow a^2-bc+ab=bc-a^2+ab\) (nhân hai vế với -1)
\(\Leftrightarrow2a^2=2bc\Leftrightarrow a^2=bc\) (chuyển vế + chia cả hai vế cho 2)
Có: a/b=c/d => a/c=b/d
=>(a+b)/(c+d)=a/c
=>(a+b)^2/(c+d)^2=(a/c)^2=a/c.b/d=ab/cd
=> dpcm
\(\frac{b}{a+b}=\frac{c}{b+c}=\frac{a}{a+c}\Rightarrow\frac{a+b}{b}=\frac{b+c}{c}=\frac{a+c}{a}\)
\(\Leftrightarrow\frac{a}{b}+1=\frac{b}{c}+1=\frac{c}{a}+1\)mà\(a,b,c>0\Rightarrow a+b+c\ne0\)
\(\Rightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\Rightarrow a=b=c\)
\(\Rightarrow M=\frac{ab+bc+ac}{a^2+b^2+c^2}=\frac{a^2+b^2+c^2}{a^2+b^2+c^2}=1\)
Bài 1 :
a) \(C=\frac{-4}{\left(2x-3\right)^2+5}\)
Vì \(\left(2x-3\right)^2\ge0\forall x\)
\(\Rightarrow C\ge\frac{-4}{5}\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow2x-3=0\Leftrightarrow x=\frac{3}{2}\)
Vậy....
b) \(\frac{a+b}{a-b}=\frac{c+a}{c-a}\)
\(\Rightarrow\left(a+b\right)\left(c-a\right)=\left(c+a\right)\left(a-b\right)\)
\(\Leftrightarrow ac-a^2+bc-ab=ac-bc+a^2-ab\)
\(\Leftrightarrow ac-a^2-ab-ac+ab-a^2=-bc-bc\)
\(\Leftrightarrow-2a^2=-2bc\)
\(\Leftrightarrow a^2=bc\left(đpcm\right)\)
b) a+b/a-b = c+a/c-a
=> (a+b).(c-a) = (a-b).(c+a)
<=> (a+b).c - (a+b).a = (a-b).c + (a-b).a
<=> ac+bc - a^2-ba = ac-bc + a^2 - ba
<=> ac -ac + bc + bc -ba +ba = a^2 +a^2
<=> 2bc = 2a^2
<=> bc = a^2 (đccm)
Chúc bạn hc tốt