Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hàng trăm có 7 cách chọn
Hàng chục có 6 cách chọn
Hàng đơn vị có 5 cách chọn
Vậy chọn đc \(5\cdot6\cdot7=210\) số thỏa yêu cầu đề
Lời giải:
Gọi số thỏa mãn có dạng $\overline{a_1a_2a_3}$
Để số trên chia hết cho $3$ thì $a_1+a_2+a_3\vdots 3$
Thấy $3\leq a_1+a_2+a_3\leq 12$ nên $a_1+a_2+a_3\in \left\{3;6;9;12\right\}$
+) Để $a_1+a_2+a_3=3$ thì $(a_1,a_2,a_3)=(0,1,2)$
Ta lập được $2.2.1=4$ số thỏa mãn
+) Để $a_1+a_2+a_3=6$ thì $(a_1,a_2,a_3)=(0,1,5); (0,2,4); (1,2,3)$
Ta lập được $2.2.1+2.2.1+3.2.1=14$ số thỏa mãn
+) Để $a_1+a_2+a_3=9$ thì $(a_1,a_2,a_3)=(0,4,5); (1,3,5); (2,3,4)$
Ta lập được: $2.2.1+3.2.1+3.2.1=16$ số thỏa mãn
+) Để $a_1+a_2+a_3=12$ thì $(a_1,a_2,a_3)=(3,4,5)$
Ta lập được: $3.2.1=6$ số
Tóm lại lập được: $4+14+16+6=40$ số.
Ta "dán" 2 chữ số 3 và 3 liền với nhau thành chữ số kép. Có hai cách "dán" (23 hoặc 32). Bài toán trở thành: có 5 chữ số 0,1,4,5, số kép. Hỏi có thể lập được bao nhiêu số tự nhiên mỗi số có 5 chữ số khác nhau.
Ta giải bằng quy tắc nhân như sau:
Bước 1: Dán 2 số 2 và 3 với nhau. Có \(n_1\) = 2 cách
Bước 2: Số hàng vạn có \(n_2\) = 4 cách chọn (trừ số 0)
Bước 3: Số hàng nghìn có \(n_3\) = 4 cách chọn
Bước 4: Số hàng trăm có \(n_4\) = 3 cách chọn
Bước 5: Số hàng chực có \(n_5\) = 2 cách chọn
Bước 6: Số hàng đơn vị có \(n_6\) = 1 cách chọn
Theo quy tắc nhân số các số cần chọn là
n = \(n_1\)\(n_2\)\(n_3\)\(n_4\)\(n_5\)\(n_6\) = 2.4.4.3.2.1 = 192
Vậy có 192 số cần tìm.
Chọn B
Mỗi số có ba chữ số khác nhau lập được từ các chữ số 1, 2, 3, 4, 5, 6 là một chỉnh hợp chập 3 của 6 phần tử . Nên số
các số lập được là A 6 3 = 120 .
Giải
Gọi số đó là abc
Ta có: Có 9 cách chọn a
Có 9 cách chọn b
Có 9 cách chọn c
Vậy có thể lập: 9 x 9 x 9 = 729 (số)
Mình không thể nêu hết nhé.