Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\overline{abcde}\)
TH1: e=0
e có 1 cách chọn
Chữ số 2 có 4 cách chọn
ba chỗ còn lại có 4*3*2=24 cách
=>Có 4*24=96 cách
TH2: e=5; a=2
a,e có 1 cach
b có 4 cách
c có 3 cách
dcó 2 cách
=>Có 4*3*2=24 cách
TH3: e=5; a<>2
e có 1 cách chọn
a có 3 cách chon
số 2 có 3 cách
hai số còn lại có 3*2=6 cách
=>Có 3*3*6=54 cách
=>CÓ 96+24+54=174 số
Gọi số cần tìm là \(\overline{abcdefgh}\)
TH1: h=0
Bỏ 2 ô mà có thể số 1 đứng cạnh nhau ta được 5 ô còn lại có trống để cho số 1 vào
=>Có \(C^3_5\left(cach\right)\)
Số cách chọn cho 4 ô trống còn lại là: \(A^4_8\left(cách\right)\)
=>Có \(C^3_5\cdot A^4_8\left(cách\right)\)
TH2: h<>0
=>h có 4 cách
Số cách chọn cho vị trí số 1 là \(C^3_5\left(cách\right)\)
=>SỐ cách chọn cho các vị trí còn lại là: \(A^4_8\left(cách\right)\)
Nếu số 0 đứng đầu thì trừ đi số ô nhét số 1 vào thì còn 4 ô và có \(C^3_4\) cách nhét số1
=>Số cách chọn cho 3 vị trí còn lại là \(A^3_7\left(cách\right)\)
=>Trường hợp này có \(4\cdot\left(A^4_8\cdot C^3_5-A^3_7\cdot C^3_4\right)\left(cách\right)\)
=>Có tất cả 80640 cách
a) Mỗi số có 3 chữ số đôi một khác nhau lập được từ 7 chữ số đã cho là một chỉnh hợp chập 3 của 7 chữ số. Do đó, số các số lập được là
\(A_7^3 = 7.6.5 = 210\) (số)
b) Việc lập ra được một số lẻ phải qua 2 công đoạn
Công đoạn 1: Chọn chữ số hàng đơn vị là chữ số lẻ, có 4 cách chọn (1; 3; 5 hoặc 7)
Công đoạn 2: Chọn 2 chữ số bất kì trong 6 chữ số còn lại và sắp xếp chúng cho vị trí chữ số hàng trăm và hàng chục, mỗi số như vậy là một chỉnh hợp chập 2 của 6 phần tử, nên số các số được lập ra là: \(A_6^2 = 6.5 = 30\) (cách)
Áp dụng quy tắc nhân, ta có số các số có 3 chữ số lập được từ 7 chữ số đã cho là số lẻ là: \(4.30 = 120\) (số)
Số bất kì: \(6!-5!\) số
Xếp 0 và 5 cạnh nhau: 2 cách
Hoán vị bộ 05 với 4 chữ số còn lại: \(5!\) cách
Hoán vị bộ 05 với 4 chữ số còn lại sao cho 0 đứng đầu: \(4!\) cách
\(\Rightarrow2.5!-4!\) cách xếp sao cho 0 và 5 cạnh nhau
\(\Rightarrow6!-5!-\left(2.5!-4!\right)\) cách xếp thỏa mãn
a) Từ 4 chữ số 0, 1, 2, 3:
- Hàng trăm có 3 cách chọn.
- Hàng chục có 3 cách chọn.
- Hàng đơn vị có 2 cách chọn.
Vậy có tất cả 3.3.2 = 18 số tự nhiên khác nhau có 3 chữ số được lập từ 0, 1, 2, 3.
b) - Trường hợp 1: hàng đơn vị là số 0 như vậy hàng trăm có 3 cách chọn, hàng chục có 2 cách chọn.
Có tất cả 1. 2. 3 = 6 số có thể lập được.
- Trường hợp 2: hàng đơn vị là số 2 như vậy hàng trăm có 2 cách chọn, hàng chục có 2 cách chọn.
Có tất cả 1. 2. 2 = 4 số có thể lập được.
Vậy có thể lập 6 + 4 = 10 số tự nhiên chẵn có ba chữ số khác nhau.
Gọi số cần tìm là \(\overline{abcdef}\)
TH1: 0,1,2 là 3 số cuối
=>\(\overline{abc012};\overline{abc210}\)
a có 6 cách
b có 5 cách
c có 4 cách
=>CÓ 6*5*4*2=240 cách
TH2: \(\overline{ab\left\{0,1,2\right\}f}\)
0,1,2 có 3!=6 cách
a có 5 cách
b có 4 cách
f có 3 cách
=>Có 360 cách
TH3: \(\overline{a\left\{0,1,2\right\}ef}\)
0,1,2 có 3!=6 cách
f có 2 cách
e có 5 cách
a có 4 cách
=>Có 6*3*5*4=360 cách
TH4: \(\overline{\left\{0,1,2\right\}def}\)
{0;1;2} có 4 cách
f có 3 cách
d có 5 cách
e có 4 cách
=>Có 4*3*5*4=240 cách
=>Có 120+120+360+360+240=1200 cách
TH1 (012)def : chọn a từ (1,2) có 2 cách
chọn b từ (012)/(a) có 2 cách
chọn c từ (012)/(ab) có 1 cách
chọn f chẵn từ (4,6) có 2 cách
với d và e chọn 2 số từ 4 số còn lại và xếp nên có 4A2 cách
vậy có 2.2.1.4A2.2 số
TH2 a(012)ef
xếp chỗ cho 3 số (012) có 3! cách
chọn f từ (4,6) có 2 cách
chọn ae từ 4 số còn lại và xếp có 4A2 cách
vậy có 3!.2.4A2 số
TH3 ab(012)f
tương tự TH2
TH4 : abc(012):
chọn f chẵn từ (0,2) có 2 cách
chọn e từ (012)/(a) có 2 cách
chọn d từ (012)/(ab) có 1 cách
với abc chọn 3 số từ 5 số còn lại và xếp nên có 5A3 cách
vậy có 2.2.1.5A3 số
tổng 4 TH ta có
2.2.1.4A2.2+3!.2.4A2+3!.2.4A2+2.2.1.5A3=624 số
Gọi STN có 3 chữ số là \(\overline {abc} \)
- a có 4 cách ( khác 0).
- b có 4 cách (khác a).
- c có 3 cách (khác a, b).
Vậy có thể lập được 4. 4. 3= 48 số tự nhiên có ba chữ số khác nhau.
Việc lập số tự nhiên gồm ba chữ số chia hết cho 5 là thực hiện 3 hành động liên tiếp: chọn chữ số hàng đơn vị, chọn chữ số hàng chục, chọn chữ số hàng trăm.
chọn chữ số hàng đơn vị: Có 1 cách chọn (số 5).
chọn chữ số hàng chục: Có 6 cách chọn.
chọn chữ số hàng trăm: Có 6 cách chọn.
Theo quy tắc nhân, số số tự nhiên lập được là: 1.6.6=36 (số).
Chọn 2 vị trí cho chữ số 1: có \(C_6^2\) cách
Chọn vị trí cho 4 chữ số còn lại: \(4!\) cách
\(\Rightarrow C_6^2.4!\) số