K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 10 2018

Chọn C

Mỗi số tự nhiên có 3 chữ số khác nhau được tạo thành từ các chữ số 1,2,3,4,5,6 là một chỉnh hợp chập 3 của 6 và ngược lại. Vậy có A 6 3  số tự nhiên thỏa mãn yêu cầu bài toán.

11 tháng 6 2017

Gọi  là số cần lập 1 + a2 + a3 = 10

Theo bài ra ta có:  (1)

 và đôi một khác nhau nên

 a1,a2,a3,a4,a5,a6 = 1 + 2 + 3 + 4 + 5 + 6 =21

 

 (2)

Từ (1), (2) suy ra: 1 + a2 + a3 = 10  

Phương trình này có các bộ nghiệm là: ( a­1 , a2  , a3 ) = (1,3,6); (1,4,5); (2,3,5)

Với mỗi bộ ta có 3!.3!=36  số.

Vậy có cả 3.36=108  số cần lập.

Chọn C.

20 tháng 10 2017

Chọn đáp án C

Cách 1: Gọi x = a 1 a 2 . . . a 6 ¯ , a i ∈ 1 , 2 , 3 , 4 , 5 , 6 là số cần lập

Theo bài ra ta có:

 

Mà a 1 , a 2 , a 3 , a 4 , a 5 , a 6 ∈ 1 , 2 , 3 , 4 , 5 , 6  và đôi một khác nhau nên

Từ (1), (2) suy ra: a 1 + a 2 + a 3 = 10

Phương trình này có các bộ nghiệm là:

 

Với mỗi bộ ta có 36 số.

Vậy có cả thảy 3.36=108 số cần lập.

Cách 2: Gọi x = a b c d e f  là số cần lập

Ta có:

 

⇒ a + b + c = 11 .

Do a , b , c ∈ 1 , 2 , 3 , 4 , 5 , 6  

Suy ra ta có các cặp sau:

Với mỗi bộ như vậy ta có 3! cách chọn a, b, c và 3! cách chọn d ,e ,f  

Do đó: 3!.3!.3!= 108 số thỏa yêu cầu bài toán

26 tháng 10 2018

8 tháng 8 2019
https://i.imgur.com/ZuQRJlA.jpg

gọi số cần tìm là abcdef

a có 4 cách chọn

+ với a = { 1,2,3}

b có 5 cách chọn

c có 4 cách chọn

d có 3 cách chọn

e có 2 cách chọn

f có 1 cách chọn

\(\Rightarrow\) có 360 số

+ với a = 4

b có 3 cách chọn

b={ 1,2}

c có 4 cách chọn

d có́ 3 cách chọn

e có 2 cách choṇ

f có 1 cách chọn

b =3

c có 1 cách chọn

d có 3 cách chọn

e có 2 cách chọn

f có 1 cách chọn

\(\Rightarrow\)có 54 số

vậy có 360 + 54 = 414 số

17 tháng 5 2016

Ta có 1+2+3+4+5+6+ =21 Vậy tổng của 3 chữ số đầu là 10

Dễ thấy       1+3+6 = 1+4+5 = 2+3+5

Vậy có 3 cách chọn 3 nhóm 3 chữ số đầu (1,3,6 hoặc 1,4,5 hoặc 2,3,5)

Với 1 cách chọn nhóm 3 chữ số thì có 3! cách để lập ra số \(\overline{a_1a_2a_3}\)

Với 3 số còn lại thì có 3! cách để lập ra số \(\overline{a_4a_5a_6}\)

(ở đây \(\overline{a_1a_2a_3a_4a_5a_6}\) là số thỏa mãn yêu cầu đề ra)

Theo quy tắc nhân ta có 3.6.6 = 108

Vậy có 108 số cần tìm

16 tháng 5 2020

Em thấy như này còn thiều trường hợp hay sao ý ạ tại ba số nhỏ hơn đâu nhất thiết phải bằng 10 ạ 123 vs 345 vẫn tỏa mãn đấy chứ ạ.Có thể cho em là mình sai ở đâu hay kế quả thế nào được không ạ??

NV
21 tháng 12 2022

1.

Chữ số hàng đơn vị có 4 cách chọn (từ 1,3,5,7)

Chọn và hoán vị 4 chữ số từ 6 chữ số còn lại: \(A_6^4\) cách

Tổng cộng: \(4.A_6^4\) cách

2.

Gọi chữ số cần lập có dạng \(\overline{abcd}\)

a.

Lập số có 4 chữ số bất kì (các chữ số đôi một khác nhau): \(A_6^4\) cách

Lập số có 4 chữ số sao cho số 0 đứng đầu: \(A_5^3\) cách

\(\Rightarrow A_6^4-A_5^3=300\) số

b.

Để số được lập là số chẵn \(\Rightarrow\) d chẵn

TH1: \(d=0\Rightarrow abc\) có \(A_5^3\) cách chọn

TH2: \(d\ne0\Rightarrow d\) có 2 cách chọn (từ 2;4)

a có 4 cách chọn (khác 0 và d), b có 4 cách chọn, c có 3 cách chọn

\(\Rightarrow2.4.4.3=96\) số

Tổng cộng: \(A_5^3+96=156\) số

Xác suất \(P=\dfrac{156}{300}=...\)

21 tháng 12 2022

cho e hỏi chữ "A" bấm máy sao

3 tháng 4 2017

a) ĐS : P6 = 6! = 720 (số).

b) Số tự nhiên chẵn cần lập có dạng , với a, b, c, d, e, f là các phần tử khác nhau của tập {1, 2, 3, 4, 5, 6}, có kể đến thứ tự, f chia hết cho 2.

Để lập được số tự nhiên này, phải thực hiện liên tiếp hai hành động sau đây:

Hành động 1: Chọn chữ số f ở hàng đơn vị, với f chia hết cho2. Có 3 cách để thực hiện hành động này.

Hành động 2: Chọn một hoán vị của 5 chữ số còn lại (khác với chữ số f đã chọn) để đặt vào các vị trí a, b, c, d, e (theo thứ tự đó). Có 5! cách để thực hieenjj hành động này.

Theo quy tắc nhân suy ra số các cách để lập được số tự nhiên kể trên là

3 . 5! = 360 (cách).

Qua trên suy ra trong các số tự nhiên có 6 chữ số khác nhau đã lập được từ các chữ số đã cho, co 360 số tự nhiên chẵn.

Tương tự ta tìm được trong các số tự nhiên có 6 chữ số khác nhau đã lập được từ các chữ số đã cho, có 360 số tự nhiên lẻ.

c) Trong các số tự nhiên có 6 chữ số khác nhau lập được từ các chữ số đã cho, những số tự nhiên bé hơn 432000 hoặc là những số tự nhiên có chữ số hàng trăm nghìn nhỏ hơn 4 hoặc là những số tự nhiên có chữ số hàng trăm nghìn là 4 và chữ số hàng chục nghìn nhỏ hơn 3 hoặc là những số tự nhiên có chữ số hàng trăm nghìn là 4 và chữ số hàng chục ngìn là 3 và chữ số hàng nghìn nhỏ hơn 2. Do đó từ các chữ số đã cho, để lập được số tự nhiên có 6 chữ số khác nhau, bé hơn 432000 (ta gọi là số tự nhiên cần lập), phải thực hiện một hành động trong ba hành dộng loại trừ nhau đôi một sau đây:

Hành động 1: Lập số tự nhiên có 6 chữ số khác nhau, với chữ số hàng trăm nghìn nhỏ hơn 4.

Có 3 cách để chọn chữ số hàng trăm nghìn và có 5! cách để chọn một hoán vị của 5 chữ số (đã cho) còn lại, rồi đặt vào các vị trí từ hàng chục nghìn đến hàng đơn vị.

Theo quy tắc nhân suy ra: Số các cách để thực hiện hành động này là:

3 . 5! = 360 (cách).

Hành động 2: Lập số tự nhiên có 6 chữ số khác nhau, với chữ số hàng trăm nghìn là chữ số 4 và chữ số hàng chục nghìn nhỏ hơn 3.

Tương tự như trên ta tìm được số các cách để thực hiện hành động này là:

1 . 2 . 4! = 48 (cách).

Hành động 3: Lập số tự nhiên có 6 chữ số khác nhau, với chữ số hàng trăm nghìn là chữ số 4, chữ số hàng chục nghìn là chữ số 3, chữ số hàng nghìn nhỏ hơn 2.

Tương tự như trên ta tìm được số các cách để thực hiện hành động này là:

1 . 1 . 1 . 3! = 6 (cách)

Theo quy tắc cộng suy ra số các cách để từ các chữ số khác nhau, lập được từ các chữ số đã cho, có 414 số bé hơn 432000

3 tháng 4 2017

a) ĐS : P6 = 6! = 720 (số).

b) Số tự nhiên chẵn cần lập có dạng , với a, b, c, d, e, f là các phần tử khác nhau của tập {1, 2, 3, 4, 5, 6}, có kể đến thứ tự, f chia hết cho 2.

Để lập được số tự nhiên này, phải thực hiện liên tiếp hai hành động sau đây:

Hành động 1: Chọn chữ số f ở hàng đơn vị, với f chia hết cho2. Có 3 cách để thực hiện hành động này.

Hành động 2: Chọn một hoán vị của 5 chữ số còn lại (khác với chữ số f đã chọn) để đặt vào các vị trí a, b, c, d, e (theo thứ tự đó). Có 5! cách để thực hieenjj hành động này.

Theo quy tắc nhân suy ra số các cách để lập được số tự nhiên kể trên là

3 . 5! = 360 (cách).

Qua trên suy ra trong các số tự nhiên có 6 chữ số khác nhau đã lập được từ các chữ số đã cho, co 360 số tự nhiên chẵn.

Tương tự ta tìm được trong các số tự nhiên có 6 chữ số khác nhau đã lập được từ các chữ số đã cho, có 360 số tự nhiên lẻ.

c) Trong các số tự nhiên có 6 chữ số khác nhau lập được từ các chữ số đã cho, những số tự nhiên bé hơn 432000 hoặc là những số tự nhiên có chữ số hàng trăm nghìn nhỏ hơn 4 hoặc là những số tự nhiên có chữ số hàng trăm nghìn là 4 và chữ số hàng chục nghìn nhỏ hơn 3 hoặc là những số tự nhiên có chữ số hàng trăm nghìn là 4 và chữ số hàng chục ngìn là 3 và chữ số hàng nghìn nhỏ hơn 2. Do đó từ các chữ số đã cho, để lập được số tự nhiên có 6 chữ số khác nhau, bé hơn 432000 (ta gọi là số tự nhiên cần lập), phải thực hiện một hành động trong ba hành dộng loại trừ nhau đôi một sau đây:

Hành động 1: Lập số tự nhiên có 6 chữ số khác nhau, với chữ số hàng trăm nghìn nhỏ hơn 4.

Có 3 cách để chọn chữ số hàng trăm nghìn và có 5! cách để chọn một hoán vị của 5 chữ số (đã cho) còn lại, rồi đặt vào các vị trí từ hàng chục nghìn đến hàng đơn vị.

Theo quy tắc nhân suy ra: Số các cách để thực hiện hành động này là:

3 . 5! = 360 (cách).

Hành động 2: Lập số tự nhiên có 6 chữ số khác nhau, với chữ số hàng trăm nghìn là chữ số 4 và chữ số hàng chục nghìn nhỏ hơn 3.

Tương tự như trên ta tìm được số các cách để thực hiện hành động này là:

1 . 2 . 4! = 48 (cách).

Hành động 3: Lập số tự nhiên có 6 chữ số khác nhau, với chữ số hàng trăm nghìn là chữ số 4, chữ số hàng chục nghìn là chữ số 3, chữ số hàng nghìn nhỏ hơn 2.

Tương tự như trên ta tìm được số các cách để thực hiện hành động này là:

1 . 1 . 1 . 3! = 6 (cách)

Theo quy tắc cộng suy ra số các cách để từ các chữ số khác nhau, lập được từ các chữ số đã cho, có 414 số bé hơn 432000.



12 tháng 10 2021

Số tự nhiên có 6 chữ số có dạng: \(\overline{abcdef}\)

f có 3 cách chọn.

a có 5 cách chọn.

b có 4 cách chọn.

c có 3 cách chọn.

d có 2 cách chọn.

e có 1 cách chọn.

Vậy lập được \(3.5.4.3.2=360\) số tự nhiên thỏa mãn yêu cầu.

25 tháng 2 2020

a) 720

b) 360

21 tháng 10 2021

a]720

b]360