K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
20 tháng 4 2023

Gọi số cần lập có dạng \(\overline{abc}\)

Do \(300< \overline{abc}< 500\Rightarrow a\) có 2 cách chọn (3 hoặc 4)

Bộ b, c có \(A_5^2=20\) cách chọn và hoán vị

\(\Rightarrow2.20=40\) số thỏa mãn

20 tháng 4 2023

Cảm ơn ạ

7 tháng 5 2023

\(\overline{abc}\) 

a có 3 cách chọn

b có 5 cách chọn

c có 4 cách chọn

=>Có 3*4*5=60 số

20 tháng 1 2023

Gọi ba chữ số cần tìm là : \(\overline{abc}\)

\(+,TH1:a=3\) 

=> a có 1 cách chọn

\(b,c\) có \(A_5^2\) cách chọn

\(=>\) số t/m là : \(1.A_5^2=20\left(số\right)\)

\(+,TH2:a\in\left\{4;5\right\}\)

=> a có \(2\) cách chọn

\(b,c\) có \(A_5^2\) cách 

\(=>\) số t/m là : \(2\times A_5^2=40\left(số\right)\)

=> SỐ CẦN TÌM LÀ : \(20+40=60\left(số\right)\)

NV
21 tháng 4 2023

Không gian mẫu: \(A_6^3=120\)

Gọi số cần lập có dạng \(\overline{abc}\)

Số chia hết cho 5 \(\Rightarrow c=5\) (1 cách chọn)

Chọn và hoán vị cặp ab: \(A_5^2=20\) cách

\(\Rightarrow1.20=20\) số chia hết cho 5

Xác suất: \(P=\dfrac{20}{120}=\dfrac{1}{6}\)

13 tháng 5 2023

 Gọi các số thỏa ycbt là \(\overline{abcd}\).

 Xét trường hợp \(a\le3\). Do \(d\) là số lẻ nên \(d\in\left\{1;3;5;7\right\}\) (4 cách)

 Với mỗi cách chọn d, a có 6 cách chọn, b có 6 cách chọn và c có 5 cách chọn. Suy ra có \(4.6.6.5=720\) số

 Xét trường hợp \(a=4\). Nếu \(b=0\) thì c có 6 cách chọn. Nếu c lẻ (4 cách chọn) thì d có 3 cách chọn \(\Rightarrow\) Có \(4.3=12\) số. Nếu c chẵn (2 cách chọn) thì d có 4 cách chọn \(\Rightarrow\) Có \(2.4=8\) số. Do đó, có tất cả \(12+8=20\) số dạng \(\overline{40cd}\) thỏa ycbt.

 Nếu \(b=1\) thì c có 4 cách chọn. Nếu \(c=3\) thì \(d\in\left\{5;7\right\}\) (có 2 số). Nếu c chẵn (3 cách) thì d có 3 cách. \(\Rightarrow\) Có \(3.3=9\) số. Vậy có tất cả \(2+9=11\) số dạng \(\overline{41cd}\) thỏa ycbt.

 Vậy có \(20+11=31\) số dạng \(\overline{4bcd}\) thỏa ycbt. Do đó, có tất cả \(720+31=751\) số thỏa ycbt.

18 tháng 4 2023

Bạn có thể gthich rõ giúp mình vs đc kh ạ

Cảm ơn bạn nhiều

a: \(\overline{abcd}\)

a có 7 cách chọn

b có 6 cách

c có 5 cách

d có 4 cách

=>Có 7*6*5*4=840 cách

b: Bộ ba chia hết cho 9 sẽ có thể là (1;2;6); (1;3;5); (2;3;4)

Mỗi bộ có 3!=6(cách)

=>Có 6*3=18 cách

c: \(\overline{abcde}\)

e có 3 cách

a có 6 cách

b có 5 cách

c có 4 cách

d có 3 cách

=>Có 3*6*5*4*3=1080 cách

\(\overline{abc}\)

c có 4 cách

a có 4 cách

b có 3 cách

=>Có 4*4*3=48 cách