K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
13 tháng 12 2020

Chữ số hàng đơn vị có 5 cách chọn

Xếp 5 chữ số còn lại sao cho không có 2 chữ số 2 nào đứng cạnh nhau có đúng 1 cách dạng 2x2y2 trong đó x;y là chữ số bất kì khác được chọn từ 8 chữ số còn lại

Số số thỏa mãn: \(5.A_8^2=...\)

7 tháng 1 2021

(*) Lập các số 8 chữ số có 3 chữ số 9.

Đưa các chữ số vào ô: 

 .  .  .  .  .  .  .  . 

TH1: Có số 0

Đưa 0 vào : 7 cách

Lấy 3 ô bất kì trong 7 ô còn lại để chứa 3 chữ số 9: \(C^3_7\) cách

Chọn 4 chữ số trong 8 chữ số chưa dùng : \(A^4_8\) cách 

=> TH1 có \(7\cdot C^3_7\cdot A^4_8=411600\)

TH2: Không có số 0

Lấy 3 ô bất kì trong 8 ô còn lại để chứa 3 chữ số 9: \(C^3_8\) cách

Chọn 5 chữ số trong 8 chữ số chưa dùng (không dùng 0) : \(A^5_8\) cách 

=> TH2 có \(C^3_8A^5_8=376320\)

=> Lập được 411600 + 376320 =787920 số 8 chữ số có 3 chữ số 9

(*) Lập các số có 3 chữ số 9 mà 3 chữ số 9 đứng cạnh nhau : 

Đặt \(\alpha=999\)

Đưa các chữ số vào ô: 

 \(\alpha\)  .  .  .  .  . 

TH1: Có số 0

Đưa 0 vào : 5 cách

Đưa \(\alpha\) vào : 5 cách

Chọn 4 chữ số trong 8 chữ số chưa dùng : \(A^4_8\) cách

=> TH1 : \(5\cdot5A^4_8=42000\)

TH2: Không có số 0

Đưa \(\alpha\) vào : 6 cách

Chọn 5 chữ số trong 8 chữ số chưa dùng (không dùng 0) : \(A^5_8\) cách 

=> TH2: \(6\cdot A^5_8=40320\)

=>  Lập được 42000 + 40320 =82320 số 8 chữ số có 3 chữ số 9 mà 3 chữ số 9 đứng cạnh nhau

Vậy lập được 787920 - 82320 = 705600 số 8 chữ số có 3 chữ số 9 mà 3 chữ số 9 không đứng cạnh nhau

 

 

 

 

 

 

29 tháng 4 2019

Chọn A

Cách 1:

Ta có S là tập hợp các số tự nhiên gồm 9 chữ số được lập từ X = {6;7;8}, trong đó chữ số 6 xuất hiện 2 lần; chữ số 7 xuất hiện 3 lần; chữ số 8 xuất hiện 4 lần nên

 cách xếp 2 chữ số 6 vào 2 trong 9 vị trí

 cách xếp 3 chữ số 7 vào 3 trong 7 vị trí còn lại

Có 1 cách xếp 4 chữ số 8 vào 4 trong 4 vị trí còn lại

Chọn ngẫu nhiên một số từ tập S nên 

Gọi A là biến cố “số được chọn là số không có chữ số 7 đứng giữa hai chữ số 6”

TH1: 2 chữ số 6 đứng liền nhau

Có 8 cách xếp cho số .Trong mỗi cách như vậy có C 7 3  cách xếp chữ số 7 và 1 cách xếp cho các chữ số 8

Vậy có số 8. C 7 3 .1 = 280 số

TH2: Giữa hai số 6 có đúng 1 chữ số và số đó là số 8.

Có 7 cách xếp cho số .Trong mỗi cách như vậy có C 6 3  cách xếp chữ số 7 và 1 cách xếp các chữ số 8

Vậy có 7. C 6 3  = 140 số

TH3: Giữa hai số 6 có đúng 2 chữ số và đó là hai chữ số 8.

Tương tự Có 6. C 5 3 = 60 số

TH4: Giữa hai số 6 có đúng 3 chữ số và đó là ba chữ số 8.

Có 5. C 4 3 = 20 số

TH5: Giữa hai số 6 có đúng 4 chữ số và đó là bốn chữ số 8.

Có 4. C 4 3  = 4 số

Từ đó suy ra 

Xác suất cần tìm là 

Cách 2:

- Số phần tử không gian mẫu 

- Tính số phần tử của biến cố A“số được chọn là số không có chữ số 7 đứng giữa hai chữ số 6”

Xếp 2 số 6 có 1 cách:  

Xếp 3 số 7 vào 2 khoảng  cách ( số cách xếp bằng số nghiệm nguyên không âm của phương trình 

Xác suất cần tìm là 

NV
19 tháng 12 2020

Số số thỏa mãn: \(\dfrac{9!}{5!}=3024\) số

(Đây là loại hoán vị lặp)

 

19 tháng 12 2020

Cảm bạn

12 tháng 11 2017

Đáp án A

Lời giải: 

Gọi số có 8 chữ số thỏa mãn đề bài là

+ Chọn vị trí của 3 chữ số 0 trong 7 vị trí a2 đến a8: Vì giữa 2 chữ số 0 luôn có ít nhất 1 chữ số khác 0, nên ta chọn 3 vị trí trong 5 vị trí để điền các số 0, sau đó thêm vào giữa 2 số 0 gần nhau 1 vị trí nữa ⇒ Số cách chọn là .

+ Chọn các số còn lại: Ta chọn bộ 5 chữ số (có thứ tự) trong 9 chữ số từ 1 đến 9, có cách chọn

 

Vậy số các số cần tìm là 10.15120 = 151200 (số)

25 tháng 5 2017

Đáp án D

Số cách sắp xếp 5 chữ số khác nhau là: A 9 5

Giữa 5 số đó có 6 chỗ trống nhưng số 0 không thể đứng đầu nên số cách sắp xếp 3 chữ số 0 là

C 5 3 = 10   c á c h

Vậy số các số gồm 8 chữ số thỏa mãn yêu cầu đề bài là:

A 9 5 .10 = 151200

10 tháng 3 2021

Chọn 4 chữ số còn lại : \(C^4_6\)

Số số cần tìm : \(\dfrac{C^4_6\cdot7!}{3!}\)

15 tháng 9 2019