Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số cần tìm có dạng a b c d ¯ với a , b , c , d ∈ A = 0 , 1 , 2 , 3 , 4 , 5 .
Vì a b c d ¯ là số chẵn ⇒ d = 0 , 2 , 4 .
TH1. Nếu d= 0, số cần tìm là a b c 0 ¯ . Khi đó:
a được chọn từ tập A \ 0 nên có 5 cách chọn.
b được chọn từ tập A \ 0 , a nên có 4 cách chọn.
c được chọn từ tập A \ 0 , a , b nên có 3 cách chọn.
Như vậy, ta có 5.4.3 = 60 số có dạng a b c 0 ¯ .
TH2. Nếu d ∈ 2 , 4 ⇒ d có 2 cách chọn.
Khi đó, a có 4 cách chọn (khác 0 và d),
b có 4 cách chọn và c có 3 cách chọn.
Như vậy, ta có 2.4.4.3 = 96 số cần tìm như trên.
Vậy có tất cả 60 +96 = 156 số cần tìm.
Chọn đáp án A.
Từ các chữ số {0, 3, 4, 5, 6, 7} có thể lập được bao nhiêu số tự nhiên chẵn gồm 4 chữ số khác nhau ?
Số cần tìm có dạng \(\overline{abcd}\left(a,b,c,d\in\left\{0;3;4;5;6;7\right\}\right)\)
TH1: \(d=0\)
a có 5 cách chọn
b có 4 cách chọn
c có 3 cách chọn
\(\Rightarrow\) Có \(3.4.5=60\) cách lập.
TH2: \(d\ne0\)
d có 2 cách chọn
a có 4 cách chọn
b có 4 cách chọn
c có 3 cách chọn
\(\Rightarrow\) Có \(2.3.4.4=96\) cách lập.
Vậy có \(96+60=156\) cách lập.
Vì có 3 số lẻ là 1,3,5, nên ta tạo được 6 cặp số kép: 13;31;15;51;35;53
Gọi A là tập các số gồm 4 chữ số được lập từ X={0;13;2;4;6}.
Gọi A1,A2,A3 tương ứng là số các số tự nhiên lẻ gồm 4 chữ số khác nhau được lập từ các chữ số của tập X và 13 đứng ở vị trí thứ nhất, thứ hai và thứ ba.
Ta có:
Nên
Vậy số các số cần lập là: 6.60=360 số.
Chọn A.
a. Gọi chữ số cần lập là \(\overline{abcd}\)
TH1: \(d=0\Rightarrow\) bộ abc có \(A_9^3\) cách chọn
TH2: \(d\ne0\Rightarrow d\) có 4 cách chọn (từ 2,4,6,8)
a có 8 cách chọn (khác 0 và d), b có 8 cách chọn (khác a và d), c có 7 cách chọn (khác a,b,d)
\(\Rightarrow4.8.8.7\) số
Tổng cộng: \(A_9^3+4.8.8.7=...\)
b. Chọn 4 chữ số còn lại: có \(C_7^4\) cách
Hoán vị 3 chữ số 0,1,2: có \(3!\) cách
Coi bộ 3 chữ số này là 1 số, hoán vị với 4 chữ số còn lại: \(5!\) cách
Ta đi tính số trường hợp 0 đứng đầu:
Số 0 đứng đầu trong bộ 0,1,2: có \(2!\) cách
Đặt bộ 0,1,2 đứng đầu, xếp vị trí cho 4 chữ số còn lại: \(4!\) cách
Vậy có: \(C_7^4.\left(3!.5!-2!.4!\right)=...\) số
Giải
a, Có 6 chữ số khác nhau
Gọi số cần tìm là \(\overline{abcdef}\)
a có 5 cách chọn ( \(a\ne0\))
\(\overline{bcedf}\)có 5! cách chọn
=> Có tất cả 5.5! = 600 (số)
Vậy có 600 số có 6 chữ số khác nhau
b, Gọi số có 4 chữ số cần tìm là \(\overline{abcd}\)
Vì \(\overline{abcd}\) là số chẵn nên d \(\in\left(0,2,4\right)\)
TH1: d=0
\(\overline{abc}\) có \(A_5^3\) cách chọn => 60 cách chọn
TH2 : d=(2,4) -> có 2 cách chọn
a có 4 cách chọn ( a khác 0,d)
b có 4 cách chọn ( b khác a,d)
c có 3 cách chọn ( c khác a,b,d)
=> 4.4.3.2=96 số
Nên kết hợp hai trường hợp ta có 60+96=156 ( số)
Vậy có 156 số có 4 chữ số chẵn khác nhau
c, Gọi số có 3 chữ số khác nhau là \(\overline{abc}\)
TH1:
a = {4,5} -> có 2 cách
\(\overline{bc}\) có \(A_4^2\) cách chọn
=> Có 2.\(A_4^2\)=2.12=24 số
TH2: a=3 -> có 1 cách
b={1,2,4,5} -> có 4 cách
c có 4 cách ( c khác a,b)
=> 4.4=16 (số)
TH3: a=3 -> có 1 cách chọn
b=0-> có 1 cách chọn
c={1,2,4,5} -> có 4 cách chọn
=> có 4 số
Nên ta có 24+16+4=44( số)
Vậy có tất cả 44 số có 3 chữ số khác nhau lớn hơn 300
b, Số có 4 chữ số có dạng \(\overline{abcd}\).
a có 7 cách chọn.
b có 7 cách chọn.
c có 6 cách chọn.
d có 5 cách chọn.
\(\Rightarrow\) có \(7.7.6.5=1470\) số thỏa mãn.
a. Gọi số đó là \(\overline{ab}\)
a có 5 cách chọn (khác 0), b có 5 cách chọn (khác a)
Theo quy tắc nhân ta có: \(5.5=25\) số
b. Gọi số đó là \(\overline{abc}\)
a có 5 cách chọn (khác 0), b có 5 cách chọn (khác a), c có 4 cách chọn (khác a và b)
Có: \(5.5.4=100\) số
c. Gọi số đó là \(\overline{abcd}\)
Do số chẵn nên d chẵn
- TH1: \(d=0\) (1 cách chọn d)
a có 5 cách chọn (khác d), b có 4 cách chọn (khác a và d), c có 3 cách chọn
\(\Rightarrow1.5.4.3=60\) số
- TH2: \(d\ne0\Rightarrow d\) có 2 cách chọn (2 và 4)
a có 4 cách chọn (khác 0 và d), b có 4 cách chọn (khác a và d), c có 3 cách chọn
\(\Rightarrow2.4.4.3=96\) số
Theo quy tắc cộng, có: \(60+96=156\) số thỏa mãn
d.
Gọi số đó là \(\overline{abcde}\)
Số lẻ nên e lẻ \(\Rightarrow\) e có 3 cách chọn (1;3;5)
a có 4 cách chọn (khác 0 và e), b có 4 cách chọn (khác a và e), c có 3 cách, d có 2 cách
\(\Rightarrow3.4.4.3.2=288\) số
Gọi số cần tìm có dạng a b c d ¯ với a , b , c , d ∈ A = 0 , 1 , 2 , 3 , 4 , 5 .
Vì a b c d ¯ là số chẵn ⇒ d ∈ 0 , 2 , 4 .
TH1. Nếu d = 0 số cần tìm là a b c 0 ¯ . Khi đó: A \ 0 , a , b
a được chọn từ tập A \ 0 nên có 5 cách chọn.
b được chọn từ tập A \ 0 , a nên có 4 cách chọn.
c được chọn từ tập nên có 3 cách chọn.
Như vậy, ta có 5.4.3 = 60 số có dạng a b c 0 ¯ .
TH2. Nếu d = 2 , 4 ⇒ d : có 2 cách chọn.
Khi đó, a có 4 cách chọn (khác 0 và d), b có 4 cách chọn và c có 3 cách chọn.
Như vậy, ta có 2.4.4.3 = 96 số
Vậy có tất cả 60 + 96 = 156 số
Chọn đáp án A.