K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 12 2023

a: Xét ΔOEA vuông tại E có EM là đường cao

nên \(OM\cdot OA=OE^2\)

=>\(OA=\dfrac{10^2}{6}=\dfrac{50}{3}\left(cm\right)\)

ΔOEA vuông tại E

=>\(OE^2+EA^2=OA^2\)

=>\(EA^2+10^2=\left(\dfrac{50}{3}\right)^2\)

=>\(EA^2=\left(\dfrac{40}{3}\right)^2\)

=>EA=40/3(cm)

Xét ΔEAO vuông tại E có EM là đường cao

nên \(EM\cdot OA=EA\cdot EO\)

=>\(EM\cdot\dfrac{50}{3}=10\cdot\dfrac{40}{3}\)

=>\(EM\cdot50=10\cdot40\)

=>EM=400/50=8(cm)

Ta có: ΔOEF cân tại O

mà OM là đường cao

nên M là trung điểm của EF và OM là phân giác của góc EOF

=>\(EF=2\cdot EM=16\left(cm\right)\)

b: Xét ΔOEA và ΔOFA có

OE=OF
\(\widehat{EOA}=\widehat{FOA}\)

OA chung

Do đó: ΔOEA=ΔOFA

=>\(\widehat{OEA}=\widehat{OFA}=90^0\)

=>AFlà tiếp tuyến của (O)

c: Xét (O) có

ΔEFC nội tiếp

EC là đường kính

Do đó: ΔEFC vuông tại F

=>EF\(\perp\)FC tại F

=>CF\(\perp\)ED tại F

Xét ΔECD vuông tại C có EF là đường cao

nên \(EF\cdot ED=EC^2\)

=>\(2\cdot EM\cdot ED=\left(2R\right)^2=4R^2\)

=>\(EM\cdot ED=2R^2\)

Câu 1: Cho (O;R) và điểm A nằm ngoài đường tròn (O). Vẽ 2 tiếp tuyến AB, AC của (O) (B,C: tiếp điểm). Vẽ cát tuyến ADE của (O); D nằm giữa D & E; tia AD nằm giữa 2 tia AB và AO.a) Gọi H là giao điểm của OA và BC. C/m: DEOH nội tiếpb) Đường thẳng AO cắt (O) tại M và N (M nằm giữa A và O). C/m: EH.AD= MH.ANCâu 2: Cho nửa đường tròn tâm (O;R) đường kính AB và điểm C trên đường tròn sao cho CA=CB. Gọi M...
Đọc tiếp

Câu 1: Cho (O;R) và điểm A nằm ngoài đường tròn (O). Vẽ 2 tiếp tuyến AB, AC của (O) (B,C: tiếp điểm). Vẽ cát tuyến ADE của (O); D nằm giữa D & E; tia AD nằm giữa 2 tia AB và AO.

a) Gọi H là giao điểm của OA và BC. C/m: DEOH nội tiếp

b) Đường thẳng AO cắt (O) tại M và N (M nằm giữa A và O). C/m: EH.AD= MH.AN

Câu 2: Cho nửa đường tròn tâm (O;R) đường kính AB và điểm C trên đường tròn sao cho CA=CB. Gọi M là trung điểm của dây cung AC. Nối BM cắt cung AC tại E; AE và BC kéo dài cắt nhau tại D.

a) C/m: MOCD là hình bình hành

b) Vẽ đường tròn tâm E bán kính EA cắt (O) tại điểm thứ 2 là N. Kẻ EF vuông góc với AC, EF cắt AN tại I, cắt (O) tại điểm thứ 2 là K; EB cắt AN tại H. C/m: BHIK nội tiếp.

Câu 3: Cho (O;R). Từ điểm S nằm ngoài đường tròn sao cho SO=2R. Vẽ tiếp tuyến SA,SB (A,B là tiếp tuyến). Vẽ cát tuyến SDE (D nằm giữa S và E), điểm O nằm trong góc ESB. Từ O kẻ đường vuông góc với OA cắt SB tại M. Gọi I là giao điểm của OS và (O).

a) C/m: MI là tiếp tuyến của (O)

b) Qua D kẻ đường vuông góc với OB cắt AB tại H và EB tại K. C/m: H là trung điểm của DK.

0

a) Xét tứ giác AEOF có

\(\widehat{AEO}\) và \(\widehat{AFO}\) là hai góc đối

\(\widehat{AEO}+\widehat{AFO}=180^0\left(90^0+90^0=180^0\right)\)

Do đó: AEOF là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

câu c , d ????

NV
23 tháng 1

a. Em tự giải

b. 

\(\Delta OAB\) cân tại O (do \(OA=OB=R\), mà \(OH\) là đường vuông góc (do OH vuông góc AB)

\(\Rightarrow OH\) đồng thời là trung tuyến và trung trực của AB

Hay OM là trung trực của AB

\(\Rightarrow MA=MB\Rightarrow\Delta MAB\) cân tại M

c.

Do EC là tiếp tuyến tại C \(\Rightarrow EC\perp AC\)

MA là tiếp tuyến tại A \(\Rightarrow MA\perp AC\)

\(\Rightarrow EC||MA\Rightarrow\widehat{MAH}=\widehat{CEB}\) (so le trong)

Mà \(\widehat{MAH}=\widehat{MOA}\) (cùng phụ \(\widehat{AMH}\))

\(\Rightarrow\widehat{CEB}=\widehat{MOA}\)

Xét hai tam giác CEB và MOA có:

\(\left\{{}\begin{matrix}\widehat{CEB}=\widehat{MOA}\left(cmt\right)\\\widehat{CBE}=\widehat{MAO}=90^0\end{matrix}\right.\) \(\Rightarrow\Delta CEB\sim\Delta MOA\left(g.g\right)\)

\(\Rightarrow\dfrac{BE}{OA}=\dfrac{BC}{AM}\Rightarrow BE.AM=BC.OA\)

Mà \(MA=MB\) (theo cm câu b) và \(OA=BO=R\)

\(\Rightarrow BE.BM=BC.BO\)

NV
23 tháng 1

loading...