K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 5 2018

a. AB là tiếp tuyến của đt (O) tại B (gt) => \(\widehat{OBA}=90^o\)

AC là tiếp tuyến của đt (O) tại C (gt) => \(\widehat{OCA}=90^o\)

Xét tứ giác ABOC có: \(\widehat{OBA}+\widehat{OCA}=90^o+90^o=180^o\)=> Tứ giác ABOC nội tiếp đường tròn (Dhnb) => Đpcm

b. 

Xét đt (O) có: \(\widehat{ABD}=\frac{1}{2}sđ\widebat{BD}\)(T/c góc tạo bởi tiếp tuyến và dây cung)

\(\widehat{BED}=\widehat{BEA}=\frac{1}{2}sđ\widebat{BD}\)(T/c góc nội tiếp của đt) (Do A,D,E (gt) => \(\widehat{BED}=\widehat{BEA}\))

=> \(\widehat{ABD}=\widehat{BEA}\)

Xét \(\Delta ABD\)và \(\Delta AEB\)có:

\(\widehat{A}chung\)

\(\widehat{ABD}=\widehat{BEA}\left(cmt\right)\)

=> \(\Delta ABD~\Delta AEB\left(g.g\right)\)=> \(\frac{AB}{AE}=\frac{AD}{AB}\Rightarrow AB^2=AD.AE\RightarrowĐpcm\)

c. Vì F là điểm đối xứng của D qua OA => OA là đường trung trực của DF (Đ/n đối xứng trục) => OD = OF = R (T/c điểm thuộc đường trung trực) => F \(\in\left(O\right)\)và \(\Delta ODF\)cân tại O (Đ/n) => OA vừa là đường trung trực của đoạn thẳng DF đồng thời là đường phân giác của \(\widehat{DOF}\)(T/c của \(\Delta\)cân)=> \(\widehat{DOA}=\widehat{FOA}=\frac{1}{2}\widehat{DOF}=\frac{1}{2}sđ\widebat{DF}\)

Xét đt (O) có: \(\widehat{DEF}=\frac{1}{2}sđ\widebat{DF}\)(T/c góc nội tiếp) => \(\widehat{DOA}=\widehat{DEF}\)(1)

Ta có: AB,AC lần lượt là 2 tiếp tuyến của đt (O) (B,C là 2 tiếp điểm) (gt) => OA là tia phân giác của \(\widehat{BOC}\)(Định lý về 2 tiếp tuyến cắt nhau)

Lại có: OB = OC = R => \(\Delta OBC\)cân tại O (Đ/n) => OA vừa là phân giác đồng thời là đường cao của \(\Delta OBC\)(T/c của \(\Delta\)cân)=> \(OA\perp BC\)tại H (H là giao điểm của OA và BC)

Áp dụng hệ thức lượng trong \(\Delta\)vuông ABO (vuông tại B) với đường cao BH ta được: \(AB^2=AH.AO\)

Mà \(AB^2=AD.AE\left(cmt\right)\)=> \(AD.AE=AH.AO\Leftrightarrow\frac{AD}{AO}=\frac{AH}{AE}\)

Xét \(\Delta AHD\)và \(\Delta AEO\)có:

\(\widehat{A}\)chung

\(\frac{AD}{AO}=\frac{AH}{AE}\left(cmt\right)\)

=> \(\Delta AHD~\Delta AEO\left(c.g.c\right)\)=> \(\widehat{AHD}=\widehat{AEO}=\widehat{DEO}\left(Do\overline{A,D,E}\Rightarrow\widehat{AEO}=\widehat{DEO}\right)\)=> Tứ giác DEOH là tứ giác nội tiếp (Dhnb) => \(\widehat{DEH}=\widehat{DOH}=\widehat{DOA}\)(2 góc nội tiếp cùng chắn \(\widebat{DH}\)) (Do A,H,O => \(\widehat{DOH}=\widehat{DOA}\)) (2)

Từ (1) và (2) => \(\widehat{DEF}=\widehat{DEH}\)=> 3 điểm E,F,H thẳng hàng ( 2 góc cùng số đo, có 1 cạnh chung, 2 cạnh còn lại của 2 góc cùng nằm về 1 phía so với cạnh chung thì 2 cạnh còn lại trùng nhau) => Đpcm. 

13 tháng 5 2018

bn con cau may chuabt lam zay

Câu 1: Cho (O;R) và điểm A nằm ngoài đường tròn (O). Vẽ 2 tiếp tuyến AB, AC của (O) (B,C: tiếp điểm). Vẽ cát tuyến ADE của (O); D nằm giữa D & E; tia AD nằm giữa 2 tia AB và AO.a) Gọi H là giao điểm của OA và BC. C/m: DEOH nội tiếpb) Đường thẳng AO cắt (O) tại M và N (M nằm giữa A và O). C/m: EH.AD= MH.ANCâu 2: Cho nửa đường tròn tâm (O;R) đường kính AB và điểm C trên đường tròn sao cho CA=CB. Gọi...
Đọc tiếp

Câu 1: Cho (O;R) và điểm A nằm ngoài đường tròn (O). Vẽ 2 tiếp tuyến AB, AC của (O) (B,C: tiếp điểm). Vẽ cát tuyến ADE của (O); D nằm giữa D & E; tia AD nằm giữa 2 tia AB và AO.

a) Gọi H là giao điểm của OA và BC. C/m: DEOH nội tiếp

b) Đường thẳng AO cắt (O) tại M và N (M nằm giữa A và O). C/m: EH.AD= MH.AN

Câu 2: Cho nửa đường tròn tâm (O;R) đường kính AB và điểm C trên đường tròn sao cho CA=CB. Gọi M là trung điểm của dây cung AC. Nối BM cắt cung AC tại E; AE và BC kéo dài cắt nhau tại D.

a) C/m: MOCD là hình bình hành

b) Vẽ đường tròn tâm E bán kính EA cắt (O) tại điểm thứ 2 là N. Kẻ EF vuông góc với AC, EF cắt AN tại I, cắt (O) tại điểm thứ 2 là K; EB cắt AN tại H. C/m: BHIK nội tiếp.

Câu 3: Cho (O;R). Từ điểm S nằm ngoài đường tròn sao cho SO=2R. Vẽ tiếp tuyến SA,SB (A,B là tiếp tuyến). Vẽ cát tuyến SDE (D nằm giữa S và E), điểm O nằm trong góc ESB. Từ O kẻ đường vuông góc với OA cắt SB tại M. Gọi I là giao điểm của OS và (O).

a) C/m: MI là tiếp tuyến của (O)

b) Qua D kẻ đường vuông góc với OB cắt AB tại H và EB tại K. C/m: H là trung điểm của DK.

0
12 tháng 6 2018

Bạn tự vẽ hình nhá.

Vì E là trung điểm MN => OE vuông góc MN => góc OEA =90độ

Xét tứ giác: AEOC có góc AEO + góc ACO=180độ => AEOC nội tiếp => A, E, O, C cùng thuộc 1 đường tròn

Xét tứ giác: ABEO có góc ABO + góc AEO=90độ => ABEO nội tiếp => A, E, O, B cùng thuộc 1 đường tròn

=> A, B, C, O, E cùng thuộc 1 đường tròn.

b, Ta có: góc BNC= 1/2 góc BOC (góc nội tiếp bằng 1/2 góc ở tâm) => 2.góc BNC= góc BOC

MÀ góc ABOC nội tiếp (do góc ABO+ góc ACO = 180độ) => gó BAC + góc BOC=180độ

=> 2.góc BNC+ góc BAC= 180độ

c, ta có: AMN là cát tuyến, AB là tiếp tuyến  của (O) => AB2=AM.AN

Lại có tg AHB đồng dạng tg ABO (g-g) => \(\frac{AH}{AB}=\frac{AB}{AO}\)=> AB2=AH.AO

=> AH.AO= AM.AN => \(\frac{AM}{AH}=\frac{AO}{AN}\)

Và góc MAH=góc OAN => tg MAH đồng dạng tg OAN (c-g-c) => góc AMH = góc AON

Mà góc AMH + góc HMN =180độ

=> góc AON + góc HMN =180độ

=> tứ giác MNOH nội tiếp

19 tháng 3 2020

a) xét tứ giác ABOC có 

\(\widehat{ABO}+\widehat{ACO}=90^0\)(AB , AC tiếp tuyến)

=>\(\widehat{ABO}+\widehat{ACO}=180^0\)

=> tứ giác ABOC nội  tiếp

=> \(\widehat{BOA}=\widehat{ACB}\)( chắn \(\widebat{BA}\))

b) ta có \(\hept{\begin{cases}AB=AC\left(cmt\right)\\OB=OC=R\end{cases}}\)

=> AO là đường trung trực của BC

=> \(AH\perp BC,HB=HC\)

=> \(\Delta IHB=\Delta IHC\left(c.g.c\right)\)

=>\(\widehat{HBI}=\widehat{ICH}=>\widebat{CI}=\widebat{BI}\)

\(=>\widehat{IBA}=\widehat{IBH}\)( chắn CI , BI )

=> IB là tia phân giác của góc ABC 

c)xét tam giác OCA có \(CH\perp CA=>OC^2=OH.OA\)

mà \(OC=OD=>OC^2=OD^2\)

=>\(OD^2=OH.OA\)

19 tháng 3 2020

mình làm lại nha

câu c, d nè :

c) áp dụng hệ thức lượng trong tam giác zuông ABO ta có

\(OH.OA=OB^2=OD^2=>OH.OA=OD^2\Leftrightarrow\)\(\frac{OH}{OD}=\frac{OD}{OA}=>\Delta OHD=\Delta ODA=>\widehat{OAD}=\widehat{ODH}\)

gọi J là  là tâm đường tròn  ngoại tiếp tam giác AHD

khi đó \(\widehat{OAD}=\frac{1}{2}\widehat{DJH}\)

zậy 

\(\widehat{JDO}=\widehat{ODH}+\widehat{JDH}=\frac{1}{2}\widehat{DJH}+\widehat{JDH}=\frac{1}{2}\left(\widehat{DJH}+2\widehat{JDH}\right)=\frac{1}{2}.180^0=90^0\)

=> OD là ....

d) CHỉ ra M, N thuộc trung trực AH

theo cm ở cau C thì \(OD\perp JD\)nên J thuộc tiếp tuyến tại D của (O)

Mặt khác J là tâm đường tròn ngoại tiếp tam giác AHD nên J thuộc trung trực của AC

zậy J là giao điểm của tiếp tuyến tại D của (O) zà đường trung trực AD

=> J trùng E

zậy E là tâm đường tròn ngoại tiếp tam giác AHD nên E thuộc trung trực của AH

mặt khác M , N  đều thuộc trung trực của AH nên M ,E ,N thẳng hàng

2 tháng 2 2018

a) Hai tam giác vuông ABO và ACO có chung cạnh huyền AO nên A, B, O, C cùng thuộc đường tròn đường kính AO.

Vậy tứ giác ABOC là tứ giác nội tiếp.

b) Ta thấy ngay \(\Delta ABD\sim\Delta AEB\left(g-g\right)\)

\(\Rightarrow\frac{AB}{AE}=\frac{AD}{AB}\Rightarrow AE.AD=AB^2\)

Xét tam giác vuông ABO có BH là đường cao nên áp dụng hệ thức lượng ta có:

\(AH.AO=AB^2\)

Suy ra AD.AE = AH.AO

c) Ta có \(\widehat{PIK}+\widehat{IKQ}+\widehat{P}+\widehat{Q}=360^o\)

\(\Rightarrow2\left(\widehat{PIO}+\widehat{P}+\widehat{OKQ}\right)=360^o\)

\(\Rightarrow\widehat{PIO}+\widehat{P}+\widehat{OKQ}=180^o\)

Mặt khác \(\widehat{PIO}+\widehat{P}+\widehat{IOP}=180^o\)

\(\Rightarrow\widehat{IOP}=\widehat{OKQ}\Rightarrow\Delta PIO\sim\Delta QOK\)

\(\Rightarrow\frac{IP}{PO}=\frac{OQ}{KQ}\Rightarrow PI.KQ=PO^2\)

Sử dụng bất đẳng thức Cô-si ta có:

\(IP+KQ\ge2\sqrt{IP.KQ}=2\sqrt{OP^2}=PQ\)

26 tháng 8 2020

acje cho hỏi 2 tam giác đồng dạng ở câu b là góc nào í chỉ ro rõ cho e với ạk

a) xét tứ giác ABOC có

\(\widehat{ABO}=\widehat{ACO}=90^0\)(tiếp tuyến AB,AC)

=> tứ giác ABOC nội tiếp

b) Xét tam giác  ABH zà tam giác AOB có

\(\hept{\begin{cases}\widehat{ABO}chung\\\widehat{BHA}=\widehat{OBA}=90^0\left(BC\perp CA\left(tựCM\right)\right)\end{cases}}\)

=> \(\Delta ABH~\Delta AOB\left(g.g\right)\)

\(=>\frac{AB}{AO}=\frac{AH}{AB}=>AH.AB=AB.AB\left(1\right)\)

xét tam giác ABD zà tam giác AEB có

\(\widehat{BAE}chung\)

\(\widehat{ABD}=\widehat{BEA}\)(cùng chắn \(\widebat{BD}\))

=> \(\Delta ABD~\Delta AEB\left(g.g\right)\)

\(=>\frac{AB}{AE}=\frac{AD}{AB}=>AE.AD=AB.AB\left(2\right)\)

từ 1 zà 2 suy ra

AH.AO=AE.AD(dpcm)

=>\(\Delta ADH~\Delta AOE\)

\(=>\widehat{DEO}=\widehat{DHA}\)(2 góc tương ứng

lại có 

\(\widehat{DHA}+\widehat{DHO}=180^0=>\widehat{DEO}+\widehat{DHO}=180^0\)

=> tứ giác DEOH nội tiếp

c)  Có tam giá AOM zuông tại O , OB là đường cao

\(=>\frac{1}{OA^2}+\frac{1}{OM^2}=\frac{1}{OB^2}=\frac{1}{R^2}\)

\(\frac{1}{OA.OM}=\frac{1}{OA}.\frac{1}{OM}\le\frac{1}{\frac{OA^2+OM^2}{2}}=\frac{1}{\frac{R^2}{2}}=\frac{1}{2R^2}\left(a,b\le\frac{a^2+b^2}{2}\right)\)

=>\(OA.OM\ge2R^2=>MinS_{AMN}=2R^2\)

dấu = xảy ra khi OA=OM

=> tam giác OAM zuông cận tại O

=> góc A = độ

bài 2 

ra kết quả là \(6\pi m^2\)

nếu cần giải bảo mình