K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 3 2020

xét k=100

dễ dàng tìm được tập số có n số mà trong đó  ko có số nào là bội của số kia \(\left\{101,102,...,200\right\}\)

ta chứng minh k=101 thì bài toán đúng

ta lấy ngẫu nhiên 101 số từ  tập 200 số đã cho

\(\left\{a_1,a_2,...,a_{101}\right\}\)

ta biểu diễn 101 số này thành dạng

\(a_1=2^{x_1}.b_1;a_2=2^{x_2}.b_2\)

.....

\(a_{101}=2^{x_{101}}.b_{101}\)

zới \(x_1,x_2,...,x_{101}\)là các số tự nhiên . \(b_1,b_2,...,b_{101}\)là các số lẻ zà \(1\le b_1,b_2,...,b_{101}\) 

ta thấy rằng từ 1 đến 199 có tất cả 100 số lẻ , zì thế trong 101 số đã chọn tồn tại\(m>n\)sao cho \(b_m=b_n\). hai số này là bội của nhau

zậy k nhỏ nhất là 101 thì thỏa mãn yêu cầu đề bài

19 tháng 3 2020

cảm ơn nha

11 tháng 2 2020

Xét k = 100 ta dễ dàng tìm được một tập hợp n số trong đó không số nào là bội của số kia 

\(\left\{101;102;...;200\right\}\)

Ta chứng minh với k = 101 thì bài toán đúng.

Ta lấy ra ngẫu nhiên 101 số từ tập hợp 200 số đã cho \(\left\{a_1;a_2;...;a_{101}\right\}\)

Ta biểu diễn chúng thành dạng:

\(a_1=2^{x_1}.b_1;a_2=2^{x_2}.b_2;...;a_{101}=2^{x_{101}}.b_{101}\)

với \(x_1;x_2;...;x_{101}\)là các số tự nhiên và \(b_1;b_2;...;b_{101}\)là các số lẻ.

Ta thấy từ 1 đến 199 có 100 số lẻ vì vậy trong 101 số đã cho tồn tại 2 số m > n sao cho bm = bn.Hai số này là bội của nhau.

Vậy giá trị nhỏ nhất của k là 101

11 tháng 2 2020

Nguồn: Câu hỏi của Đỗ Hoàng Phương - Toán lớp 7 | Học trực tuyến

19 tháng 4 2018

Xét \(k=100\) ta dễ dàng tìm được tập số có n số mà trong đó không có số nào là bội của số kia. \(\left\{101;102;...;200\right\}\)

Ta chứng minh với \(k=101\)thì bài toán đúng

Ta lấy ra ngẫu nhiên 101 số từ tập hợp 200 số đã cho \(\left\{a_1;a_1;...;a_{101}\right\}\)

Ta biểu diễn 101 số này thành dạng

\(a_1=2^{x_1}.b_1;a_2=2^{x_2}.b_2;...;a_{101}=2^{x_{101}}.b_{101}\)

Với \(x_1;x_2;...;x_{101}\)là các số tự nhiên, \(b_1;b_2;...;b_{101}\)là các số lẻ và

\(1\le b_1;b_2;...;b_{101}\le199\)

Ta thấy rằng từ 1 đến 199 có tất cả 100 số lẻ vì thế trong 101 số đã chọn ra tồn tại \(m>n\) sao cho \(b_m=b_n\). Hai số này chính là bội của nhau.

Vậy với k nhỏ nhất là 101 thì thỏa mãn yêu cầu bài toán.

20 tháng 4 2018

101 nhé bạn đúng 101% luôn !!

28 tháng 6 2021

https://www.youtube.com/watch?v=TA-H3IRTRLw

Xem đi;đoạn 16:52 , toi không học dirichlet nên chỉ hiểu sơ sơ :)

28 tháng 6 2021

haha

11 tháng 4 2016

Có 2016 = 2015 + 1

Áp dụng nguyên lí Đi rích lê, trong 2016 số tự nhiên bất kì luôn tìm được ít nhất 2 số chia chia cho 2015 có cùng số dư

14 tháng 2 2016

moi hok op 6

16 tháng 3 2016

Ta thấy 4482<2011ab<449 do đó ko thể có 2 chữ số a và b thỏa mãn