Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các chữ số từ 1 đến 9 có tổng cộng 9 chữ số. Để số có ba chữ số chia hết cho 3, tổng của các chữ số đó cũng phải chia hết cho 3.
Có hai trường hợp để tìm số thỏa mãn:
Trường hợp tổng ba số là 9: Có thể lập ra các số sau: 369, 639, 693, 963.
Trường hợp tổng ba số là 18: Có thể lập ra các số sau: 189, 279, 369, 459, 549, 639, 729, 819, 918.
Vậy có tổng cộng 9 số tự nhiên có 3 chữ số phân biệt và chia hết cho 3.
Chia các chữ số từ 1 đến 9 làm 3 tập \(A=\left\{3;6;9\right\}\) ; \(B=\left\{1;4;7\right\}\) ; \(C=\left\{2;5;8\right\}\)
Số có 3 chữ số chia hết cho 3 khi:
TH1: 3 chữ số của nó thuộc cùng 1 tập \(\Rightarrow3.3!=18\) số
TH2: 3 chữ số của nó thuộc 3 tập phân biệt:
Chọn ra mỗi tập một chữ số có \(3.3.3=27\) cách
Hoán vị 3 chữ số có: \(3!=6\) cách
\(\Rightarrow27.6=162\) số
Như vậy có tổng cộng \(18+162=180\) số thỏa mãn
Việc lập số tự nhiên gồm ba chữ số chia hết cho 5 là thực hiện 3 hành động liên tiếp: chọn chữ số hàng đơn vị, chọn chữ số hàng chục, chọn chữ số hàng trăm.
chọn chữ số hàng đơn vị: Có 1 cách chọn (số 5).
chọn chữ số hàng chục: Có 6 cách chọn.
chọn chữ số hàng trăm: Có 6 cách chọn.
Theo quy tắc nhân, số số tự nhiên lập được là: 1.6.6=36 (số).
TH1: Hàng đơn vị là 0
=> Số cách chọn chữ số hàng chục nghìn, nghìn, trăm, chục: 8 x 7 x 6 x 5 = 1680 (cách)
TH2: Hàng đơn vị là 5
=> Số cách chọn chữ số hàng chục nghìn, nghìn, trăm, chục: 7 x 7 x 6 x 5 = 1470 (cách)
Số lượng số tự nhiên có 5 chữ số được lập bởi các số 0,1,2,3,4,5,6,7,8 và chia hết cho 5 là: 1680 + 1470 = 3150 (số)
Đáp số: 3150 số thoả mãn
Chia A thành 3 tập hợp:
B={1;4;7}; C={2;5;8}; D={0;3;6}
TH1: 2 số trong B, 2 số trong C
=>Có \(C^2_3\cdot C^2_3\cdot4!=216\left(cách\right)\)
TH2: 1 số trong B, 1 số trong C, số 0 và 1 số trong D
=>Có 3*3*1*2*3*3*2*1=324 cách
TH3: 1 số trong B, 1 số trong C, 2 số khác 0 trong D
=>Có 3*3*1*4!=216 cách
TH4: 3 số trong B, số 0
=>Có 3*3*2*1=18 cách
TH5: 3 số trong B, 1 số khác 0 trong D
=>Có 2*4!=24*2=48 cách
TH6: 3 số trong C, số 0
=>Có 3*3*2*1=18 cách
TH7: 3 số trong C, 1 số khác 0 trong D
=>Có 2*4!=48 cách
=>Có 216+324+216+18+48+18+48=888 cách
Gọi số tự nhiên cần tìm là \(\overline {abcd} \).
- Trường hợp 1: \(d = 0\)
Mỗi cách chọn 3 số còn lại (a, b, c) (có xếp thứ tự ) trong 9 số còn lại (1, 2,...,9) là một chỉnh hợp chập 3 của 9.
Số cách chọn 3 chữ số còn lại là \(A_9^3=504\)
- Trường hợp 2: \(d = 5\) .
+ \(a \ne 0,d\) nên a có 8 cách chọn.
+ \(b \ne a,d\) nên b có 8 cách chọn.
+ \(c \ne a,b,d\) nên c có 7 cách chọn.
Vậy có: 504+ 8.8.7= 952 số tự nhiên chia hết cho 5 mà mỗi số có bốn chữ số khác nhau.
\(\overline{abcde}\)
TH1: e=0
e có 1 cách chọn
Chữ số 2 có 4 cách chọn
ba chỗ còn lại có 4*3*2=24 cách
=>Có 4*24=96 cách
TH2: e=5; a=2
a,e có 1 cach
b có 4 cách
c có 3 cách
dcó 2 cách
=>Có 4*3*2=24 cách
TH3: e=5; a<>2
e có 1 cách chọn
a có 3 cách chon
số 2 có 3 cách
hai số còn lại có 3*2=6 cách
=>Có 3*3*6=54 cách
=>CÓ 96+24+54=174 số
Lời giải:
Gọi $A$ là tập các số tự nhiên từ $1$ đến 2017$ chia hết cho $5$
$B$ là tập các số tự nhiên từ $1$ đến $2017$ chia hết cho $3$
Ta có:
\(A=\left\{5;10;15;....;2015\right\}\Rightarrow |A|=\frac{2015-5}{5}+1=403\)
\(B=\left\{3;6;9;...;2016\right\}\)
\(A\cap B=\left\{15;30;45;....;2010\right\}\Rightarrow |A\cap B|=\frac{2010-15}{15}+1=134\)
Tập hợp những số tự nhiên chia hết cho $5$ nhưng không chia hết cho $3$ là:
\(|A\setminus B|=|A|-|A\cap B|=403-134=269\)